K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15

3 tháng 11 2019

x^2+5 x^4+2x^3+10x+a x^2+2x-5 x^4+5x^2 2x^3-5x^2+10x+a 2x^3 +10x -5x^2+a -5x^2-25 a+25

Để  x4+2x3+10x+a chia hết cho đa thức x2+5 thì

\(a+25=0\Leftrightarrow a=-25\)

8 tháng 8 2019

B1: 

a, \(4x^2+y\left(y-4x\right)-9\)

\(=4x^2+y^2-4xy-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

8 tháng 8 2019

1.

b) \(a^2-b^2+a-b\)

\(=\left(a^2-b^2\right)+\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b+1\right)\)

5 tháng 7 2017

Cứ thay vào rùi thính thui

5 tháng 7 2017

Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:

c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

riêng câu này ta thay x = 9 vào luôn, vậy ta có:

\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)

\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)

\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)

\(=-9+10\)

\(=1\)

7 tháng 4 2020

Bài 2. 

a) x(x-2)-x+2=0

<=> x2-2x-x+2=0

<=> x2-3x+2=0

<=> x2-x-2x-2=0

<=> x(x-1)-2(x-1)=0

<=> (x-1)(x-2)=0 

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

b) x2(x2+1)-x2-1=0

<=> x4+x2-x2-1=0

<=> x4-1=0

<=> x4=1

<=> x=\(\pm\)1

* Dạng toán về phép chia đa thức Bài 9. Làm phép chia: a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4) d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1) Bài 10: Làm tính chia 1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 +...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4)

d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1)

Bài 10: Làm tính chia

1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)

3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2)

5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)

Bài 11:

1. Tìm n để đa thức x4 – x3 + 6x2 – x + n chia hết cho đa thức x2 – x + 5

2. Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2 – 6x + 11 2. B = x2 – 20x + 101 3. C = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x – x2 + 3 2. B = – x2 + 6x – 11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên

2. a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2 + 2x + 2 > 0 với mọi x

4. x2 – x + 1 > 0 với mọi x

5. –x2 + 4x – 5 < 0 với mọi x

4
31 tháng 12 2017

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. \(3x^3y^2:x^2=3xy^2\)

b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)

d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)

e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)

\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)

\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)

\(=x-1\)

Bài 10: Làm tính chia

( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)

C1 : Đặt phép tính chia

C2 : Đặt nhân tử chung ,tùy vào từng câu

1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)

\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)

\(=x^2+1\)

2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)

\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)

2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0

3. (x – y – z)5 : (x – y – z)3

\(=\left(x-y-z\right)^{5-3}\)

\(=\left(x-y-z\right)^2\)

\(=x^2+y^2+z^2-2xy-2xz+2yz\)

4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)

\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)

\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)

\(=2x-2\)

5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)

2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0

\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0

P/S : Tối mk lm tiếp nha bn , bh mk có việc bận

31 tháng 12 2017

Bài 11.

1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2

Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)

x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b

x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b

Đồng nhất hệ số , ta có :

* a + 1 = 1 => a = 0

* b - a + 5 = 6 => b = 6 - 5 + a = 1

* b - 5a = 1

* 5b = n => n = 5.1 = 5

Vậy , để............thì n = 5

2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)

Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2

Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)

3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b

3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b

Đồng nhất hệ số , ta có :

* 3a + 1 = 10 => 3a = 9 => a = 3

* 3b + a = 0 => 3b = -3 => b = -1

* b = n - 5 => n = b + 5 = -1 + 5 = 4

Vậy, để........thì : n = 4

3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3

Để,.......thì :

n - 2 thuộc Ư( 3)

Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1

Vậy,....

19 tháng 10 2017

Bài 1 :

a ) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)

\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)

\(\)\(=2y^2-10xy\)

Câu b tương tự

Bài 2 :

a ) \(x^2-9+\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3\right)+\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3+x-3\right)\)

\(=2x\left(x-3\right)\)

b ) \(x^3-4x^2+4x-xy^2\)

\(=x\left(x^2-4x+4-y^2\right)\)

\(=x\left[\left(x-2\right)^2-y^2\right]\)

\(=x\left(x-2-y\right)\left(x-2+y\right)\)

c ) \(x^3-4x^2+12x-27\)

\(=x^3-9x^2+5x^2+27x-15x-3^3\)

\(=\left(x^3-9x^2+27x-3^3\right)+\left(5x-15x\right)\)

\(=\left(x-3\right)^3+5\left(x-3\right)\)

\(=\left(x-3\right)\left[\left(x-3\right)^2+5\right]\)

\(=\left(x-3\right)\left(x^2-6x+14\right)\)

d ) \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(3x\left(x+1\right)-10x\left(x+1\right)\)

\(=-7x\left(x+1\right)\)