K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

2(x - 3) + 5 = 3x - 1

2x-6+5=3x-1

2x-1=3x-1

2x-3x=-1+1

-x=0

x=0

2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)

6x2+4x-5=6x2-6x+3

6x2+4x-6x2+6x=3+5

10x=8

x=4/5

(3x - 2)(2x - 3) + 5 = 5

(3x-2)(2x-3)=0

=>3x-2=0 hoặc 2x-3=0

=>x=2/3 hoặc x=3/2

7 tháng 8 2015

2(x - 3) + 5 = 3x - 1

<=>2x-6+5=3x-1

<=>2x-3x=-1+6-5

<=>-x=0

<=>x=0

 

2x(3x + 2) - 5 = 3( 2x2 - 2x + 1)

<=>6x2+4x-5=6x2-6x+3

<=>4x+6x=3+5

<=>10x=8

<=>x=0,8

 

(3x - 2)(2x - 3) + 5 = 5

<=>(3x-2)(2x-3)=0

<=>3x-2=0 hoặc 2x-3=0

<=>x=2/3 hoặc x=3/2

8 tháng 11 2016

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

8 tháng 11 2016

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

`a,`\(2^x -15= 2^4+1\)

`-> 2^x-15=17`

`-> 2^x=17+15`

`-> 2^x=32`

`-> 2^x=2^5`

`-> x=5`

`b,` Có phải đề là \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\) ?

`=>`\(\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}+1\)

`=>`\(\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}-\dfrac{x+3+63}{63}-\dfrac{x+4+62}{62}=0\)

`=>`\(\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)

`=>`\(\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)

Mà `1/65+1/64-1/63-1/62 \ne 0`

`-> x+66=0`

`-> x=-66`

a: =>2^x=2^4+16=32

=>x=5

b: Sửa đề: \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)

=>\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+2}{64}+1\right)=\left(\dfrac{x+3}{63}+1\right)+\left(\dfrac{x+4}{62}+1\right)\)

=>x+66=0

=>x=-66

12 tháng 8 2015

<= 2x^2 - 6x = 3x^2 + 3x - x^2 + 2x + 5 

<=> 2x^2 - 6x = 2x^2 + 5x + 5

<=> -6x - 5x     = 5 

=> -11x             = 5 

=> x                  = -5/11 

12 tháng 8 2015

Nhân ra rút gọn