Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\frac{x}{7}=\frac{x+16}{35}\)
\(\Rightarrow35x=7\left(x+16\right)\)
\(\Rightarrow35x=7x+112\)
\(\Rightarrow35x-7x=112\)
\(\Rightarrow28x=112\)
\(\Rightarrow x=112:28\)
\(\Rightarrow x=4\)
\(b.\frac{2-x}{16}=\frac{-4}{x-2}\)
\(\Rightarrow\frac{-\left(x-2\right)}{16}=\frac{-4}{x-2}\)
\(\Rightarrow\frac{x-2}{16}=\frac{4}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=4.16\)
\(\Rightarrow\left(x-2\right)^2=64\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm8\right)^2\)
\(\Rightarrow x-2=8\) hoặc \(x-2=-8\)
+) Nếu \(x-2=8\)
\(\Rightarrow x=8+2\)
\(\Rightarrow x=10\)
+) Nếu \(x-2=-8\)
\(\Rightarrow x=-8+2\)
\(\Rightarrow x=-6\)
Vậy \(x=10;x=-6\)
a ) \(5\left(x^2\right)+7x+2\)
\(\Leftrightarrow5x^2+7x+2=0\)
\(\Leftrightarrow5x^2+5x+2x+2=0\)
\(\Leftrightarrow\left(5x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=-1\end{matrix}\right.\)
Vậy .............
b ) \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
\(\Leftrightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
Vì \(\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)\ne0\)
Ta có : \(x+18=0\Leftrightarrow x=-18\)
Vậy ......
c ) \(\dfrac{x-1}{x-3}=\dfrac{x-4}{x-7}\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x-x+7=x^2-4x-3x+12\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy ..
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
a) Ta có: \(\frac{x-2}{15}=\frac{9}{5}\Rightarrow5.\left(x-2\right)=9.15\)
\(\Rightarrow5x-10=135\)
\(\Rightarrow5x=145\)
\(\Rightarrow x=29\)
b) \(\frac{2-x}{16}=\frac{-4}{x-2}\Rightarrow\left(2-x\right).\left(x-2\right)=\left(-4\right).16\)
\(\Rightarrow4x-x^2-4=-64\)
\(\Rightarrow4x-x^2=-60\)
Lập bảng rồi tính ra
c) \(\frac{14}{x}=\frac{x-1}{4}\Rightarrow x.\left(x-1\right)=14.4\)
\(\Rightarrow x.\left(x-1\right)=56\)
Vì 56 = 8 x 7
\(\Rightarrow x=8\)
Câu c) còn có thêm \(x=-7\) nữa nha MMS_Hồ Khánh Châu vì \(x\inℤ\) mà :')
a) \(\dfrac{x-2}{15}=\dfrac{9}{5}\)
\(\Leftrightarrow x-2=\dfrac{9\times15}{5}\)
\(\Leftrightarrow x-2=27\)
\(\Leftrightarrow x=29\)
Vậy ...............
b) \(\dfrac{2-x}{16}=\dfrac{-4}{x-2}\)
\(\Leftrightarrow\dfrac{2-x}{16}=\dfrac{4}{2-x}\)
\(\Leftrightarrow\left(2-x\right)^2=64\)
\(\Leftrightarrow\left(2-x\right)^2-64=0\)
\(\Leftrightarrow\left(2-x\right)^2-8^2=0\)
\(\Leftrightarrow\left(2-x-8\right)\left(2-x+8\right)=0\)
\(\Leftrightarrow\left(-x-6\right)\left(-x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-6=0\\-x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=6\end{matrix}\right.\)
Vậy ..............
c) \(\dfrac{14}{x}=\dfrac{x-1}{4}\)
\(\Leftrightarrow x\left(x-1\right)=56\)
\(\Leftrightarrow x^2-x-56=0\)
\(\Leftrightarrow x^2+7x-8x-56=0\)
\(\Leftrightarrow x\left(x+7\right)-8\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=8\end{matrix}\right.\)
Vậy ....................
Bài 1
a, 23 + ( x - 32 ) = 1
x - 32 = 1 - 23 = -7
x = -7 + 32
x = 2
b, 5 . (x+7) -10 = 40
5 . (x+7) = 50
x+7 = 50 :5 =10
x = 10 - 7
x = 3
a) x = 10.
b) x = 10.
c) x = 2.