Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^x-27.3^5.3^2=0\)
\(3^x-3^3.3^5.3^3=0\)
\(3^x=3^{13}\)
\(x=13\)
b) \(\left(-5+3x\right):4=16\)
\(-5+3x=64\)
\(3x=69\)
\(x=23\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{48}{49}.\dfrac{49}{50}=\dfrac{1}{50}\)
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
a) ( x + 1 ) , ( 3x + 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3x+3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\3x=0-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x=-3\end{cases}}\)
\(\Rightarrow\) \(x=-3:3=-1\)
Vậy x = -1
b) ( x2 + 2 ) . ( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}x^2+2=0\\x-3=0\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}x^2=0-2\\x=0+3\end{cases}}\)
\(\Rightarrow\) \(\orbr{\begin{cases}x^2=-2\\x=3\end{cases}}\)
\(\Rightarrow\) \(x\in\varnothing\)
Vậy x = 3
c) 4|x-4| = 4
\(\Rightarrow\)|x-4| = 4 : 4
\(\Rightarrow\)|x-4| = 1
\(\Rightarrow\orbr{\begin{cases}x-4=1\\x-4=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+4\\x=\left(-1\right)+4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Vậy x \(\in\) { 3;5 }
a)\(\orbr{\begin{cases}x+1=0\\3x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\3x=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-1\end{cases}\Rightarrow}x=-1}\)
b)\(\orbr{\begin{cases}x^2+2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-2\\x=3\end{cases}}}\)Vì : \(x^2\ge0\)\(\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=3\end{cases}\Rightarrow x=3}\)
c)\(4.\left|x-4\right|=4\)
\(\Rightarrow\left|x-4\right|=4:4=1\)
\(\Rightarrow\orbr{\begin{cases}x-4=1\\x-4=-1\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)