Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt

Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự

\(a,\)\(\left(x-3\right)\left(x^2+x+1\right)-x^2\left(x-2\right)=0\)
\(\Rightarrow x^3+x^2+1-3x^2-3x-3-x^3+2x^2=0\)
\(\Rightarrow-3x-2=0\)
\(\Rightarrow x=\frac{-2}{3}\)
\(b,\)\(\left(2x-1\right)\left(x^2-1\right)-x^2\left(x-4\right)=-5x\)
\(\Rightarrow2x^3-2x-x^2+1-x^3+4x^2=-5x\)
\(\Rightarrow x^3+3x^2+3x+1=0\)
\(\Rightarrow\left(x+1\right)^3=0\)
\(\Rightarrow x=-1\)

a/ \(\left(x+2\right)^2-9=0\)
<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)
<=> \(\left(x-1\right)\left(x+5\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
b/ \(x^2-2x+1=25\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)
\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)
\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)
TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)

b) \(ĐKXĐ:x\ne0\)
\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)
\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{3}{5}\)
c) \(ĐKXĐ:x\ne2\)
\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn
Vậy \(x=-2\)

a) \(x^2=2x+1\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow x^2-2x+1-2=0\)
\(\Leftrightarrow\left(x-1\right)^2-2=0\)
\(\Leftrightarrow\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
b) ĐKXĐ : x khác 0
\(\frac{5x^4-3x^3}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^3\left(5x-3\right)}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-3}{2}=\frac{1}{2}\)
\(\Leftrightarrow5x-3=1\Leftrightarrow x=\frac{4}{5}\)( thỏa mãn ĐKXĐ )
c) ĐKXĐ : x khác 2
\(\frac{x^4-2x^2-8}{x-2}=0\)
\(\Leftrightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)
\(\left(x-3\right).\left(x^2+x+1\right)-x^2\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+x+1\right)-3\left(x^2+x+1\right)-x^3+2x^2=0\)
\(\Leftrightarrow x^3+x^2+x-3x^2-3x-3-x^3+2x^2=0\)
\(\Leftrightarrow-2x-3=0\)
\(\Leftrightarrow-2x=3\)
\(\Leftrightarrow x=\frac{-3}{2}\)