K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

\(a,\)\(\left(x-3\right)\left(x^2+x+1\right)-x^2\left(x-2\right)=0\)

\(\Rightarrow x^3+x^2+1-3x^2-3x-3-x^3+2x^2=0\)

\(\Rightarrow-3x-2=0\)

\(\Rightarrow x=\frac{-2}{3}\)

13 tháng 6 2019

\(b,\)\(\left(2x-1\right)\left(x^2-1\right)-x^2\left(x-4\right)=-5x\)

\(\Rightarrow2x^3-2x-x^2+1-x^3+4x^2=-5x\)

\(\Rightarrow x^3+3x^2+3x+1=0\)

\(\Rightarrow\left(x+1\right)^3=0\)

\(\Rightarrow x=-1\)

I don't now 

sorry 

...................

nha

27 tháng 7 2018

b)  \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)

Đặt:  \(3x+3=a\)pt trở thành:

\(\left(a-5\right)a^2\left(a+5\right)+144=0\)

\(\Leftrightarrow\)\(a^4-25a^2+144=0\)

\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)

đến đây bạn tìm a rồi tính x

c)  \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)

Đặt   \(4x-5=a\)pt trở thành:

\(a\left(a-1\right)\left(a+1\right)-72=0\)

\(\Leftrightarrow\)\(a^3-a-72=0\)

p/s: ktra lại đề

d)  \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)

\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)

\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)

\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)

đến đây làm nốt

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

14 tháng 6 2019

\(\left(x-3\right).\left(x^2+x+1\right)-x^2\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+x+1\right)-3\left(x^2+x+1\right)-x^3+2x^2=0\)

\(\Leftrightarrow x^3+x^2+x-3x^2-3x-3-x^3+2x^2=0\)

\(\Leftrightarrow-2x-3=0\)

\(\Leftrightarrow-2x=3\)

\(\Leftrightarrow x=\frac{-3}{2}\)

25 tháng 6 2018

a/ \(\left(x+2\right)^2-9=0\)

<=> \(\left(x+2-3\right)\left(x+2+3\right)=0\)

<=> \(\left(x-1\right)\left(x+5\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

b/ \(x^2-2x+1=25\)

<=> \(\left(x-1\right)^2=25\)

<=> \(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)

<=> \(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

25 tháng 6 2018

a) (x+2)2=0

 ==> x+2=0

 ==> x=0-2

==> x=-2

13 tháng 7 2018

Mình giải từ cuối lên , mình giải dần -)

n,  <=> x(2x-1)-3(2x-1)=0

<=> (x-3)(2x-1)=0

<=> x= 3 hoặc x= 1/2

m, <=> (x+2)(x2-3x+5)-x2(x+2)=0

<=> (x+2)(x2-3x+5-x2)=0

<=> (x+2)(5-3x)=0

=> x= -2 hoặc5/3

13 tháng 7 2018

trả lời chi tiết giúp mình với

\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)

\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)

\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)

\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)

TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)

31 tháng 7 2016

Cậu ghi gì thế ? @@ 

25 tháng 10 2020

b) \(ĐKXĐ:x\ne0\)

\(\left(5x^4-3x^3\right):2x^3=\frac{1}{2}\)

\(\Leftrightarrow x^3.\left(5x-2\right):2x^3=\frac{1}{2}\)

\(\Leftrightarrow\frac{5x-2}{2}=\frac{1}{2}\)\(\Leftrightarrow5x-2=1\)

\(\Leftrightarrow5x=3\)\(\Leftrightarrow x=\frac{3}{5}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{3}{5}\)

c) \(ĐKXĐ:x\ne2\)

\(\frac{x^4-2x^2-8}{x-2}=0\)\(\Rightarrow x^4-2x^2-8=0\)

\(\Leftrightarrow\left(x^4-4x^2\right)+\left(2x^2-8\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-4\right)+2\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+2\right)=0\)

Vì \(x^2\ge0\forall x\)\(\Rightarrow x^2+2\ge2\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

So sánh với ĐKXĐ ta thấy: \(x=-2\)thỏa mãn 

Vậy \(x=-2\)

25 tháng 10 2020

a) \(x^2=2x+1\)

\(\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow x^2-2x+1-2=0\)

\(\Leftrightarrow\left(x-1\right)^2-2=0\)

\(\Leftrightarrow\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)

b) ĐKXĐ : x khác 0

 \(\frac{5x^4-3x^3}{2x^3}=\frac{1}{2}\)

\(\Leftrightarrow\frac{x^3\left(5x-3\right)}{2x^3}=\frac{1}{2}\)

\(\Leftrightarrow\frac{5x-3}{2}=\frac{1}{2}\)

\(\Leftrightarrow5x-3=1\Leftrightarrow x=\frac{4}{5}\)( thỏa mãn ĐKXĐ )

c) ĐKXĐ : x khác 2

 \(\frac{x^4-2x^2-8}{x-2}=0\)

\(\Leftrightarrow x^4-2x^2-8=0\)

\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+2\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)