Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a, \(\left(\dfrac{1}{2}+\dfrac{4}{7}\right):x=\dfrac{-3}{4}\)
\(\dfrac{15}{14}:x=\dfrac{-3}{4}\)
=> x= \(\dfrac{-7}{10}\)
b, 0,5:x-\(1\dfrac{3}{4}\)= 25%
0,5:x-\(\dfrac{7}{4}=\dfrac{1}{4}\)
0,5:x = 2
=> x = \(\dfrac{1}{4}\)
\(a,\left(2x-5\right)+17=6\\ \Rightarrow2x-5=-11\\ \Rightarrow2x=-6\\ \Rightarrow x=-3\\ b,10-2\left(4-3x\right)=-4\\ \Rightarrow2\left(4-3x\right)=14\\ \Rightarrow4-3x=7\\ \Rightarrow3x=-3\\ \Rightarrow x=-1\\ c,24:\left(3x-2\right)=-3\\ \Rightarrow3x-2=-8\\ \Rightarrow3x=-6\\ \Rightarrow x=-2\\ d,5-2x=-17+12\\ \Rightarrow5-2x=-5\\ \Rightarrow2x=10\\ \Rightarrow x=5\)
a: =>2x-5=-11
=>2x=-6
hay x=-3
b: =>2(4-3x)=14
=>4-3x=7
=>3x=-3
hay x=-1
c: =>3x-2=-8
=>3x=-6
hay x=-2
a) \(\Rightarrow x=2021-2006=15\)
b) \(\Rightarrow2x-2016=64\Rightarrow2x=2016+64=2080\Rightarrow x=1040\)
c) \(\Rightarrow\left(2x+1\right)^3=81:3=27\Rightarrow2x+1=3\)
\(\Rightarrow2x=3-1=2\Rightarrow x=1\)
Bài 4:
a) \(\dfrac{x}{2}=\dfrac{2}{4}\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=2\)
Vậy: \(x=2\)
b) \(-\dfrac{1}{5}=\dfrac{2}{x}\)
\(\Rightarrow x=\dfrac{-5.2}{1}=-10\)
Vậy: \(x=-10\)
c) \(\dfrac{x}{5}=\dfrac{5}{x}\)
\(\Rightarrow x^2=25\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{5;-5\right\}\)
a) /x-1/ + /x+3/ = 4
<=> /1-x/ + /x+3/ =4 (1)
vì /1-x/ + /x+3/ > / (1-x) + (x+3)/ dấu ''='' xảy ra khi (1-x)(x+3) > 0
<=> /1-x/ + /x+3/ > /4/ = 4 (2)
từ (1) (2) => (1-x)(x+3) > 0
<=> (x-1)(x+3) < 0
=> x-1 và x+3 là 2 số trái dấu
mà x-1 < x + 3
=> x-1 < 0 và x+3 > 0
<=> x<1 và x> -3
=> -3 < x < 1
c) /2x+3/ - 2/4-x/ =5
<=> /2x+3/ - / 8-2x/ =5
phần còn lại làm tương tự câu a) chỉ hơi khác một chút thôi
/ x2 + /6x-2// = x2 + 4 (1)
vì x2 + / 6x-2/ > 0 với mọi x
nên /x2+/6x-2// = x2 + / 6x-2/ (2)
từ (1) và (2) => x2 + /6x-2/ = x2 +4
<=> /6x-2/ = 4
=> 6x-2 =4 hoặc 6x-2=-4
+) nếu 6x-2=4
<=> 6x= 6
<=> x= 1
+) nếu 6x-2 = -4
<=> 6x = -2
<=> x = \(\frac{-1}{3}\)
vậy x thuộc { \(\frac{-1}{3}\) ; 1}