Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{2011}\)
\(5A=5+5^2+5^3+...+5^{2012}\)
=>\(5A-A=5^{2012}-1\Rightarrow A=\frac{5^{2012}-1}{4}\)
Phương trình ban đầu tương đương với: \(\frac{5^{2012}-1}{4}\left|x-1\right|=5^{2012}-1\)
\(\Leftrightarrow\left|x-1\right|=4\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
a: Ta có: \(x\in B\left(15\right)\)
nên \(x\in\left\{0;15;30;45;60;75;...\right\}\)
mà 40<=x<=70
nên \(x\in\left\{45;60\right\}\)
b: \(2011^2\cdot2011^x=2011^7\)
\(\Leftrightarrow x+2=7\)
hay x=5
MS=\(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{2}{2011}\right)+\left(1+\frac{1}{2012}\right)\)
=\(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
=> \(x.\frac{1}{2013}=1\)
=>x=2013
a)
\(2^x\left(1+2+2^2+2^3\right)=480\)
\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)
a) \(\left|x-2011\right|=x-2012\)
\(\Rightarrow\orbr{\begin{cases}x-2011=x-2012\\x-2011=2012-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}0x=-1\\2x=4023\end{cases}\Rightarrow x=\frac{4023}{2}}\)
a) x thuộc [-3;-2;-1;0;1;2;3;4;5] b) không biết