\(\sqrt{x^2+6x+9}=3x-1\)

b. \(\sqrt{x^4=7}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

a) Ta có: \(\sqrt{x^2+6x+9}=3x-1\)

\(\Rightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Rightarrow\)\(x+3=3x-1\)

\(\Rightarrow x-3x=-1-3\Rightarrow-2x=-4\Rightarrow x=2\).

b) \(\sqrt{x^4}=7\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x=-7\)hoặc \(x=7\).

c) Ta có: \(x^2+2\sqrt{13}x=-13\)

\(\Rightarrow x^2+2\sqrt{13}x+13=0\)

\(\Rightarrow\left(x+\sqrt{13}\right)^2=0\Rightarrow x+\sqrt{13}=-\sqrt{13}\).

Chúc bn hc tốt!

11 tháng 6 2018

a) \(\sqrt{x^2+6x+9}=3x-1\)

  Ta thấy vế trái là căn bậc hai nên là số không âm => vế phải cũng phải là số không âm

=> \(3x-1\ge0\Rightarrow x\ge\frac{1}{3}\)

Khi đó phương trình tương đương với:

  \(\sqrt{\left(x+3\right)^2}=3x-1\)

 \(\Leftrightarrow\left|\left(x+3\right)\right|=3x-1\)

Do \(x\ge\frac{1}{3}\) nên \(x+3>0\), phương trình trên trở thành:

  \(x+3=3x-1\)

\(\Leftrightarrow x=2\)

Đối chiếu với điều kiện \(x\ge\frac{1}{3}\) thì x =2 thỏa mãn

b) \(\sqrt{x^4}=7\)

   \(\Leftrightarrow x^2=7\)

  \(\Leftrightarrow x=\pm\sqrt{7}\)

c) \(x^2+2\sqrt{13}x+13=0\)

  \(\Leftrightarrow x^2+2\sqrt{13}x+\sqrt{13}^2=0\)

  \(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

  \(\Leftrightarrow x=-\sqrt{13}\)

11 tháng 6 2018

a/ \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\left|3x\right|=2x+1\)

+) Với x ≥ 0 ta có:

\(3x=2x+1\Leftrightarrow x=1\left(tm\right)\)

+) Với x < 0 có:

\(3x=-2x-1\Leftrightarrow5x=-1\Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

Vậy pt có 2 nghiệm..............................

b/ \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)(t/m)

Vậy................................

c/ \(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) Với x ≥ -3 ta có:

\(x+3=3x-1\Leftrightarrow-2x=-4\Leftrightarrow x=2\left(tm\right)\)

+) Với x < -3 có:

\(x+3=1-3x\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\left(ktm\right)\)

Vậy pt có 1 nghiệm x = 2

d/ \(\sqrt{x^4}=7\Leftrightarrow x^2=7\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Vậy.................

e/ \(x^2+2\sqrt{13x}=-13\)

ĐK : x ≥ 0

Ta thấy: \(x^2\ge0;2\sqrt{13x}\ge0\)

\(\Rightarrow x^2+2\sqrt{13x}\ge0\)

lại có: -13 < 0

=> Pt vô nghiệm

11 tháng 6 2018

Giải:

a) \(\sqrt{9x^2}=2x+1\)

\(\Leftrightarrow\sqrt{\left(3x\right)^2}=2x+1\)

\(\Leftrightarrow3x=2x+1\)

\(\Leftrightarrow x=1\)

Vậy ...

b) \(\sqrt{1-4x+4x^2}=5\)

\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\)

\(\Leftrightarrow1-2x=5\)

\(\Leftrightarrow-2x=5-1\)

\(\Leftrightarrow x=-2\)

Vậy ...

c) \(\sqrt{x^2+6x+9}=3x+1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x+1\)

\(\Leftrightarrow x+3=3x+1\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

Vậy ...

d) \(\sqrt{x^4}=7\)

\(\Leftrightarrow x^2=7\)

\(\Leftrightarrow x=\pm\sqrt{7}\)

Vậy ...

e) \(x^2+2\sqrt{13}x=-13\) (Sửa đề)

\(\Leftrightarrow x^2+2\sqrt{13}x+13=0\)

\(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

\(\Leftrightarrow x+\sqrt{13}=0\)

\(\Leftrightarrow x=-\sqrt{13}\)

Vậy ...

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được

a)

\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)

b)

\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)

\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)

c)

\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

d)

\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)

\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

e)

\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)

g)

\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)

\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)

27 tháng 6 2019

dạ em cảm ơn thầy/cô ạ

17 tháng 8 2018

mn ơi giúp mình với ạ

cảm ơn mỏi người ạ =))

AH
Akai Haruma
Giáo viên
17 tháng 8 2018

Bài 1:

Để căn thức có nghĩa thì:

a)

\(-5x-10\geq 0\Leftrightarrow 5x+10\leq 0\Leftrightarrow x\leq -2\)

b)

\(x^2-3x+2\geq 0\Leftrightarrow (x-1)(x-2)\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x-1\geq 0; x-2\geq 0\\ x-1\leq 0; x-2\leq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x\geq 2\\ x\leq 1\end{matrix}\right.\)

c) \(\frac{x+3}{5-x}\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} x+3\geq 0; 5-x>0\\ x+3\leq 0; 5-x< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3\leq x< 5\\ -3\geq x>5 (\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow -3\leq x< 5\)

d) \(-x^2+4x-4\geq 0\)

\(\Leftrightarrow -(x^2-4x+4)\geq 0\Leftrightarrow -(x-2)^2\geq 0\)

\((x-2)^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x=2\)