Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a TH1 : 9 - 7x \(\ge\)0 <=> x\(\le\)\(\frac{9}{7}\)
=> | 9 - 7x | = 9 - 7x (*)
thay (*) vào biểu thức ta có :
9 - 7x = 5x - 3
<=> -7x - 5x = -3 -9
<=> - 12x = -12
<=> x = 1
TH2 : 9 - 7x < 0 <=> x > \(\frac{9}{7}\) (**)
| 9 - 7x | = - ( 9 - 7x ) = 7x - 9 (**)
thay (**) vào biểu thức ta có :
7x - 9 = 5x - 3
<=> 7x - 5x = - 3 + 9
<=> 3x = 6
<=> x = 2
b) TH1: 4x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{4}\)
=> | 4x + 1 | = 4x + 1 (*)
thay (*) vào biểu thức ta có :
8x - ( 4x + 1 ) = x + 2
<=> 8x - 4x - 1 = x + 2 ( cái chỗ - ( 4x + 1 phải đổi dấu nha bạn, là -1 x ( 4x + 1 ) nên phải đổi dấu nha )
<=> 4x - x = 2 +1
<=> 3x = 3
<=> x = 1
TH2 : 4x + 1 < 0 <=> x < \(\frac{-1}{4}\)
=> | 4x + 1 | = - ( 4x + 1 ) = - 4x - 1 (**)( cái này cũng phải đổi dấu nè bạn )
thay (**) vào biểu thức ta có :
8x -( - 4x - 1 ) = x + 2
<=> 8x + 4x + 1 = x + 2
<=> 12x - x = 2 -1
<=> 11x = 1
<=> x = \(\frac{1}{11}\)( loại vì \(\frac{1}{11}\)> \(\frac{-1}{4}\))
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
= -9 - 2x2 + 3x3 - 6x5 - 3x7
b) Tính -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
a) \(\Leftrightarrow2\left|3x-1\right|=\dfrac{4}{5}\)
\(\Leftrightarrow\left|3x-1\right|=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\dfrac{2}{5}\\3x-1=-\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{15}\\x=\dfrac{1}{5}\end{matrix}\right.\)
b)TH1: \(x\ge3\)
\(\Leftrightarrow x+5+x-3=9\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\left(tm\right)\)
TH2: \(-5\le x< 3\)
\(\Leftrightarrow x+5-x+3=9\Leftrightarrow8=9\left(VLý\right)\)
TH3: \(x< -5\)
\(\Leftrightarrow-x-5-x+3=9\Leftrightarrow2x=-11\Leftrightarrow x=-\dfrac{11}{2}\left(tm\right)\)
\(a,2.|3x-1|-\dfrac{3}{4}=\dfrac{1}{20}\)
\(2.|3x-1|=\dfrac{1}{20}+\dfrac{3}{4}\)
\(2.|3x-1|=\dfrac{4}{5}\)
\(|3x-1|=\dfrac{4}{5}:2\)
\(|3x-1|=\dfrac{2}{5}\)
\(\Rightarrow3x-1=\pm\dfrac{2}{5}\)
\(3x-1=\dfrac{2}{5}\)
\(3x=\dfrac{2}{5}+1\)
\(3x=\dfrac{7}{5}\)
\(x=\dfrac{7}{5}:3\)
\(x=\dfrac{7}{15}\)
\(3x-1=-\dfrac{2}{5}\)
\(3x=-\dfrac{2}{5}+1\)
\(3x=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:3\)
\(x=\dfrac{1}{5}\)
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
a) f(x) = -15x3+5x4-4x2+8x2-9x3-x4+15-7x3
= (5x4-x4)-(15x3+9x3+7x3)+(8x2-4x2)+15
= 4x4-31x3+4x2+15
b) f(1)= 4.14-31.13+4.12+15 = -8
f(-1) = 4.(-1)4-31.(-1)3+4.(-1)2+15 = 54