Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3
a, \(|x+\frac{7}{3}|\ge|-3,5|\)
\(\Rightarrow|x+\frac{7}{3}|\ge3,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{3}\ge3,5\\x+\frac{7}{3}\le-3,5\end{cases}\Rightarrow\orbr{\begin{cases}x\ge\frac{7}{6}\\x\le-\frac{35}{6}\end{cases}}}\)
Vậy .....
b,\(|x-1|\le3\frac{1}{4}\)
\(\Rightarrow|x-1|\le\frac{13}{4}\)\(\Rightarrow\orbr{\begin{cases}x-1\le\frac{13}{4}\\x-1\ge-\frac{13}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x\le\frac{17}{4}\\x\ge-\frac{9}{4}\end{cases}}}\)
Vậy ....
Bài 4 :
Vì \(|2x-\frac{1}{3}|\ge0\forall x\Rightarrow|2x-\frac{1}{3}|-1\frac{3}{4}\ge-1\frac{3}{4}\)
Dấu "=" sảy ra <=> \(2x-\frac{1}{3}=0\Leftrightarrow2x=\frac{1}{3}\Leftrightarrow x=\frac{1}{6}\)
Vậy .....
Bài 5
B = \(\frac{1}{3+\frac{1}{2}.|2x-3|}=\frac{1}{3+|x-1,5|}\)
mà \(|x-1,5|\ge0\forall x\Rightarrow3+|x-1,5|\ge3\forall x\)
\(\Rightarrow B\le\frac{1}{3}\)
Dấu "=" sảy ra <=> x - 1,5= 0 <=> x = 1,5
Vậy .....
Học tốt
có bài nào hay ib mk ha
#Gấu
a, Ta có: \(\frac{a}{c}\)= \(\frac{c}{b}\)\(\Rightarrow\)\(ab\)= \(c^2\)
Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)
Ta có: b(a2+c2)= b.a2+b.c2 (1)
Thay ab= c2 vào 1 ta có:
b.a2+b.a.b= b2.a+a2.bb
Ta có: a(b2+c2) = a.b2+a.c2 (2)
Thay ab= c2 vào (1) ta có:
a.b2+b.a.a= b2.a+a2.bb
Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)
\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a}{b}\)
\(\Rightarrow\)Đpcm (Điều phải chứng minh)
Chúc bn học tốt
a.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)
b.
\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)
ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) Vậy A<1
b. \(4B=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+..+\frac{1}{n^2}=1+A< 2\Rightarrow B< 0.5\)
Câu 11: Tính: 3 1/4 + 2 1/6 - 1 1/4 - 4 5/6 = ?
A. -5/6 B. -2/3 C. 3/8 D. 3/2
Câu 12: Tìm n ϵ N, biết 2n+2 + 2n = 20, kết quả là:
A. n = 4 B. n = 1 C. n = 3 D. n = 2
Câu 13: Trong các số sau số nào là nghiệm thực của đa thức: P(x) = x2 –x - 6
A. 1 B. -2 C. 0 D. -6
Câu 14: Tìm n ϵ N, biết 4n/3n = 64/27, kết quả là:
A. n = 2 B. n = 3 C. n = 1 D. n = 0
Câu 15: Tính (155 : 55).(35 : 65)
A. 243/32 B. 39/32 C. 32/405 D. 503/32
Câu 17: Bộ ba nào trong số các bộ ba sau không phải là độ dài ba cạnh của tam giác.
A. 6cm; 8cm; 10cm B. 5cm; 7cm; 13cm C. 2,5cm; 3,5cm; 4,5cm D. 5cm; 5cm; 8cm
Câu 19: Giá trị có tần số lớn nhất được gọi là:
A. Mốt của dấu hiệuB. Tần số của giá trị đóC. Số trung bình cộngD. Số các giá trị của dấu hiệu
Câu 27: Trên mặt phẳng tọa độ Oxy lấy hai điểm: M (0; 4), N (3; 0). Diện tích của tam giác OMN là:
A. 12 (đvdt) B. 5 (đvdt) C. 6 (đvdt) D. 10 (đvdt)
Câu 28: Cho tam giác ABC vuông tại A, AB = 5cm, AC = 8cm. Độ dài cạnh BC là:
B. 12cm C. 10cm \(\sqrt{89}\)
Câu 29: Tìm các số a, b, c biết a : b : c = 4 : 7 : 9 và a + b – c = 10, ta có kết quả
A. a = 12; b = 21; c = 27 B. a = 2; C. a = 20; b = 35; c = 45 D. a = 40; b = 70; c = 90
ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\hept{\begin{cases}\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\\\frac{z}{x+y+z+t}< \frac{z}{x+z+t}< \frac{z+y}{x+y+z+t}\\\frac{t}{x+y+z+t}< \frac{t}{x+y+t}< \frac{t+z}{x+y+z+t}\end{cases}}\)
Cộng lại ta có : \(1< M< 2\) Vậy M không phải số tự nhiên
x,y,z,t thuộc N khác 0 nên x,y,z,t thuộc N sao
=> x/x+y+z > 0
=> x/x+y+z > x/x+y+z+t
Tương tự : y/x+y+t > y/x+y+z+t
z/y+z+t > z/x+y+z+t
t/x+z+t > t/x+y+z+t
=> M > x+y+z+t/x+y+z+t = 1
Lại có : x < x+y+z => x/x+y+z < 1 => 0 < x/x+y+z < 1
=> x/x+y+z < x+t/x+y+z+t
Tương tự : y/x+y+t < y+z/x+y+z+t
z/y+z+t < z+x/x+y+z+t
t/x+z+t < t+y/x+y+z+t
=> M < 2x+2y+2z+2t/x+y+z+t = 2
Vậy 1 < M < 2
=> M ko phải là số tự nhiên
Tk mk nha
a: \(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=2\\x+\dfrac{1}{5}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{5}\\x=-\dfrac{11}{5}\end{matrix}\right.\)
câu b nữa bạn