Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-2,5\right)\text{ : }1\frac{1}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}=x\text{ : }2\)
\(\left(x-2,5\right)\text{ : }\frac{3}{2}\cdot2=x\)
\(\left(x-2,5\right)\text{ : }3=x\)
\(\frac{x}{3}-\frac{2,5}{3}-x=0\)
\(\frac{-2x}{3}-\frac{2,5}{3}=0\)
\(\frac{-2x-2,5}{3}=0\)
\(\Rightarrow\text{ }-2x-2,5=0\)
\(-2x=2,5\)
\(x=\frac{-2,5}{2}\)
a, x-2,5/1,5=x/2 suy ra 3x/3-5/3=x/2 suy ra 3x-5/3=x/2 suy ra 2(3x-5)=3x tu lam tiep
y : 40 = 36 x : y = 25 : 20
y = 36 x 40 x : y = \(\frac{25}{20}\)
y = 1440 => x = 25
y = 20
Bài này ko phải lớp 7 chị Quỳnh nha
còn bài cuối là lớp 5 nên em ko biết làm
\(a,y:40=36\)
\(y=36.40\)
\(y=1440\)
\(b,x:y=25:20\)
\(\Rightarrow\frac{x}{y}=\frac{25}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=25\\y=20\end{cases}}\)
\(c,2:z=0,65\)
\(z=2:\frac{65}{100}\)
\(z=\)tự tính nốt
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự
a. Theo t/c của dãy tỉ số bằng nhau ta có:
x+y+z/2+3+5=40/10=4
=>x=4.2=8
=>y=4.3=12
=>z=4.5=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)