K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Có chứ

x=\(\sqrt{2}\)

24 tháng 6 2017

\(x^2=2\)

\(x=\sqrt{2}\)

Vẫn có thể chuyển được sang số hữu tỉ nhưng chỉ là chưa tìm ra thui:v

9 tháng 10 2016

Vd: sqrt(2) : căn bậc 2 của 2 
Mình không biết giải có đúng hay không, nhưng cũng xin góp ý. 
pt <=> z=sqrt(2)*sqtr(sprt(2)*Y^3 - X^2 - X + 1) (với x, y, z nguyên) 
Suy ra: z nguyên khi và chỉ khi z=2 
<=> sqrt(2)*Y^3 - X^2 -X +1 - sqrt(2) = 0 (pt *) (với x, y nguyên) 
Khi X nguyên: X^2 + X -1 cũng sẽ nguyên 
Suy ra: Điều kiện cần để pt* đúng thì sqrt(2)*Y^3 - sqrt(2) cũng phải nguyên 
<=> Y=1 
Khi đó: 
pt* <=> X^2 + X - 1 = 0 (x nguyên) 
pt trên không có nghiệm nguyên. 

Vậy: không tồn tại bộ số x, y, z nguyên thổa mãn phương trình đã cho.

3 tháng 4 2017

HKFLLSFDL

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$