Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
c)\(\left|2x+3\right|=x+2\)
Đk:\(x+2\ge0\Rightarrow x\ge-2\)
TH1:2x+3=x+2
\(\Rightarrow2x-x=2-3\)
\(\Rightarrow x=-1\)(Thỏa mãn đk )
TH2:2x+3=-x-2
\(\Rightarrow2x+x=-2+3\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)(Thỏa mãn đk)
Vậy x=-1 hoặc x=1/3
1.a. \(3^2-2x-5=0\Rightarrow-2x=0-9+5=-4\)
\(\Rightarrow-x=-\dfrac{4}{2}=-2\Rightarrow x=2\)
Vậy x nghiệm của đa thức \(3^2-2x-5\) là 2
b. \(x^2-5x+4=0\Rightarrow x=\dfrac{-\left(-5\right)\pm\sqrt{\left(-5\right)^2-4\cdot1\cdot4}}{2\cdot1}=\dfrac{5\pm\sqrt{25-16}}{2}=\dfrac{5\pm\sqrt{9}}{2}=\dfrac{5\pm3}{2}=\left[{}\begin{matrix}\dfrac{5+3}{2}=\dfrac{8}{2}=4\\\dfrac{5-3}{2}=\dfrac{2}{2}=1\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2-5x+4\) là 1 hoặc 4
c. \(x^2+4x+7=0\Rightarrow x=\dfrac{-4\pm\sqrt{4^2-4\cdot1\cdot7}}{2\cdot1}=\dfrac{-4\pm\sqrt{16-28}}{2}=\dfrac{-4\pm\sqrt{-12}}{2}\Rightarrow x\notin Z\)
Vậy \(x\notin Z\)
2.a. \(P\left(x\right)=3\cdot x^4-x^3+4x^2+2x+1=3x^4-x^3+4x^2+2x+1\)
\(P\left(x\right)+Q\left(x\right)=\left(3x^4-x^3+4x^2+2x+1\right)+\left(-2x^4-x^2+x-2\right)\)
\(=3x^4-x^3+4x^2+2x+1-2x^4-x^2+x-2\)
\(=x^4-x^3+3x^2+3x-1\)
Vậy \(P\left(x\right)+Q\left(x\right)=x^4-x^3+3x^2+3x-1\)
b. \(Q\left(x\right)-H\left(x\right)=-2x^4-2\)
\(\Rightarrow-H\left(x\right)=-2x^4-2-Q\left(x\right)\)
\(\Rightarrow-H\left(x\right)=-2x^4-2-\left(-2x^4-x^2+x-2\right)\)
\(\Rightarrow-H\left(x\right)=-2x^4-2+2x^4+x^2-x+2\)
\(\Rightarrow-H\left(x\right)=x^2-x\Rightarrow H\left(x\right)=-x^2+x\)
Vậy \(H\left(x\right)=x^2+x\)
c. \(H\left(x\right)=0\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0 hoặc -1
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
Mình chỉ giải câu a) thôi nhé. 4/5-1/3.x=3/2 1/3.x=4/5-3/2 1/3.x=-7/10 x=-7/10:1/3 x=-21/10
\(-3\cdot\left|2+5x\right|=4\)
\(\Rightarrow\left|2+5x\right|=-\frac{4}{3}\)
Ta có mọi giá trị tuyệt đối đều có kq là số dương nên => \(x\in\varnothing\)
k đi làm tiếp cho