Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8x-\left|4x+1\right|=x+2\)
\(\Rightarrow\left|4x+1\right|=8x-x-2\)
\(\Rightarrow\left|4x+1\right|=7x-2\)
\(\Rightarrow\orbr{\begin{cases}4x+1=7x-2\\4x+1=2-7x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x-7x=-2-1\\4x+7x=2-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-3x=-3\\11x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{11}\end{cases}}\)
Ta có: 8x - |4x + 1| = x + 2
=> |4x + 1| = 8x - x - 2
=> |4x + 1| = 7x - 2
ĐKXĐ: 7x - 2 \(\ge\)0 <=> 7x \(\ge\)2 <=> x \(\ge\)2/7
TH1: 4x + 1 = 7x - 2
=> 4x - 7x = -2 - 1
=> -3x = -3
=> x = (-3) : (-3)
=> x = 1 (tm)
TH2: 4x + 1 = -7x + 2
=> 4x + 7x = 2 - 1
=> 11x = 1
=> x = 1/11 (ktm)
Vậy ....
\(\left(4x-1\right)^3+\left(3-4x\right)\left(9+12x+16x\right)=\left(8x-1\right)\left(8x+1\right)-\left(3x-5\right)\)
\(< =>64x^3-3x^2+3x-1+\left(3x^2-4^3\right)=64x^2-1-3x+5\)
\(< =>64x^3+\left(3x^2-3x^2\right)+3x-\left(1+64\right)=64x^2-3x+4\)
\(< =>64x^3+3x-65-64x^2+3x-4=0\)
\(< =>64x^3-64x^2+6x-69=0\)
số to nên mình lười cardano , nên bạn xét vô nghiệm cũng được
phát hiện lỗi sai của mình rồi , mình xin lỗi nhé
từ dòng 2 trở đi : \(< =>64x^3-48x^2+12x-1+\left(3^3-64x^3\right)=64x^2-3x+4\)
\(< =>64x^3-64x^3-48x^2-64x^2+12x+26+3x-4\)
\(< =>-112x^2+15x+22=0\)
Bạn dùng máy tính hoặc đen ta cũng được nhé
a TH1 : 9 - 7x \(\ge\)0 <=> x\(\le\)\(\frac{9}{7}\)
=> | 9 - 7x | = 9 - 7x (*)
thay (*) vào biểu thức ta có :
9 - 7x = 5x - 3
<=> -7x - 5x = -3 -9
<=> - 12x = -12
<=> x = 1
TH2 : 9 - 7x < 0 <=> x > \(\frac{9}{7}\) (**)
| 9 - 7x | = - ( 9 - 7x ) = 7x - 9 (**)
thay (**) vào biểu thức ta có :
7x - 9 = 5x - 3
<=> 7x - 5x = - 3 + 9
<=> 3x = 6
<=> x = 2
b) TH1: 4x + 1 \(\ge\)0 <=> x \(\ge\)\(\frac{-1}{4}\)
=> | 4x + 1 | = 4x + 1 (*)
thay (*) vào biểu thức ta có :
8x - ( 4x + 1 ) = x + 2
<=> 8x - 4x - 1 = x + 2 ( cái chỗ - ( 4x + 1 phải đổi dấu nha bạn, là -1 x ( 4x + 1 ) nên phải đổi dấu nha )
<=> 4x - x = 2 +1
<=> 3x = 3
<=> x = 1
TH2 : 4x + 1 < 0 <=> x < \(\frac{-1}{4}\)
=> | 4x + 1 | = - ( 4x + 1 ) = - 4x - 1 (**)( cái này cũng phải đổi dấu nè bạn )
thay (**) vào biểu thức ta có :
8x -( - 4x - 1 ) = x + 2
<=> 8x + 4x + 1 = x + 2
<=> 12x - x = 2 -1
<=> 11x = 1
<=> x = \(\frac{1}{11}\)( loại vì \(\frac{1}{11}\)> \(\frac{-1}{4}\))
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
Bài làm:
a) \(x^2+4x+12=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)+8=0\)
\(\Leftrightarrow\left(x+2\right)^2=-8\left(sai\right)\)
=> Vô nghiệm
b) \(x^2+6x+10=0\)
\(\Leftrightarrow\left(x^2+6x+9\right)+1=0\)
\(\Leftrightarrow\left(x+3\right)^2=-1\left(sai\right)\)
=> Vô nghiệm
c) \(x^2+8x+27=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+11=0\)
\(\Leftrightarrow\left(x+4\right)^2=-11\left(sai\right)\)
=> Vô nghiệm
Học tốt!!!!
\(8x-\left|4x+1\right|=x+2\Leftrightarrow\left|4x+1\right|=7x-2\)
ĐK : x >= 2/7
TH1 : \(4x+1=7x-2\Leftrightarrow3x=3\Leftrightarrow x=1\)(tm)
TH2 : \(4x+1=2-6x\Leftrightarrow10x=1\Leftrightarrow x=\frac{1}{10}\)(ktm)
\(8x-\left|4x+1\right|=x+2\)
\(\Leftrightarrow\left|4x+1\right|=7x+2\left(ĐK:x\ge-\frac{2}{7}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}4x+1=7x+2\\4x+1=-7x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}-3x=1\\11x=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(L\right)\\x=-\frac{3}{11}\left(TM\right)\end{cases}}}\)
Vậy:....
#H