Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2n+xnyn+y2n)(xn−yn)(x3n+y3n)=[(xn)2+xnyn+(yn)2](xn−yn)(x3n+y3n)=(x3n−y3n)(x3n+y3n)=x6n−y6n
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
\(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)
a) Để M có nghĩa \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)
Vậy \(x\ne2\)và \(x\ne0\)thì M có nghĩa
b) \(M=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3\)
\(=x\left(x-2\right)+3\)
\(=x^2-2x+3\)
c) Ta có: \(M=x^2-2x+3\)
\(=\left(x-1\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+2\ge0+2;\forall x\)
Hay \(M\ge2;\forall x\)
Dấu'="xẩy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(M_{min}=2\)\(\Leftrightarrow x=1\)
Bài 1:
\(P=3x^2+x-1\)
\(=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)\)
\(=3\left(x^2+2x.\frac{1}{6}+\frac{1}{36}-\frac{13}{36}\right)\)
\(=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge\frac{-13}{12}\)\(\forall x\)
Dấu '' = '' xảy ra khi: \(\left(x+\frac{1}{6}\right)^2=0\Rightarrow x=\frac{-1}{6}\)
Vậy \(MinP=\frac{-13}{12}\) khi \(x=\frac{-1}{6}\)
Bài 2:
a) Không có điều kiện
b) Nghiệm vô tỉ
Bạn xem lại đề hai phần này nhé.
c) \(\left(x-2\right)^3-x^3+6x^2=14\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2-14=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(-6x^2+6x^2\right)+12x+\left(-8-14\right)=0\)
\(\Rightarrow12x-22=0\)
\(\Rightarrow x=\frac{11}{6}\)
d) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+28x+2x+7=0\)
\(\Rightarrow\left(8x^2+28x\right)+\left(2x+7\right)=0\)
\(\Rightarrow4x\left(2x+7\right)+\left(2x+7\right)=0\)
\(\Rightarrow\left(4x+1\right)\left(2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x+1=0\\2x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-1\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-7}{2}\end{cases}}\)
a) x2 + 2x + 2
= ( x2 + 2x + 1 ) + 1
= ( x + 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
b) x2 - 6x + 10
= ( x2 - 6x + 9 ) + 1
= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
c) \(x^2+x+\frac{1}{4}\)
\(=x^2+2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x+\frac{1}{2}\right)^2\ge0\forall x\)( Min là 0 nên chưa kết luận vội :)) )
1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)
\(\left(x+2\right)\left(2-3x-1\right)=0\)
\(\left(x+2\right)\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)
\(3x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)
3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)
\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)
\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)
\(\left(4-x\right)\left(5x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)
4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)
\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)
\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x+3-x-1\right)=0\)
\(\left(x-1\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)
5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)
\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)
\(\left(2x-3\right)\left(-2-x+3\right)=0\)
\(\left(2x-3\right)\left(1-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
6) \(2x^2-5x-7=0\)
\(2x^2+2x-7x-7=0\)
\(2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)
7) \(x^2-x-12=0\)
\(x^2+3x-4x-12=0\)
\(x\left(x+3\right)-4\left(x+3\right)\)
\(\left(x+3\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
8) \(3x^2+14x-5=0\)
\(3x^2+15x-x-5=0\)
\(3x\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(3x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)
a)
(x-2).(x+2)-(x+2)^2=4
<=>(x^2-2^2)-(x^2+4x+4)=4
<=> x^2-4-x^2-4x-4=4
<=> -4x=12
<=> x=-3
a) ( x - 2 )( x + 2 ) - ( x + 2 )2 = 4
<=> x2 - 4 - ( x2 + 4x + 4 ) = 4
<=> x2 - 4 - x2 - 4x - 4 = 4
<=> -4x - 8 = 4
<=> -4x = 12
<=> x = -3
b) 4( x + 1 )2 + ( 2x - 1 )2 - 8( x - 1 )( x + 1 ) = 11
<=> 4( x2 + 2x + 1 ) + 4x2 - 4x + 1 - 8( x2 - 1 )
<=> 4x2 + 8x + 4 + 4x2 - 4x + 1 - 8x2 + 8 = 11
<=> 4x + 13 = 11
<=> 4x = -2
<=> x = -2/4 = -1/2
Bài 1 :
1) a2 - 4 + y ( a - 2 )
= ( a + 2 ) ( a - 2 ) + y ( a - 2 )
= ( a - 2 ) ( a + 2 + y )
2) ( x - 2 )2 - 9y2
= ( x - 2 - 3y ) ( x - 2 + 3y )
Bài 2 :
1) 3 ( x + 4 ) - 2x = 5
=> 3x + 12 - 2x = 5
=> x + 12 = 5
=> x = 5 - 12 = - 7
Vậy x = - 7
2) x ( x - 2 ) - x2 - 6 = 0
=> x2 - 2x - x2 - 6 = 0
=> - 2x - 6 = 0
=> 2x = - 6
=> x = \(-\frac{6}{2}=3\)
Vậy x = 3
3 ) x2 - 3x = 0
=> x ( x - 3 ) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
4) 5 - 3 ( x - 6 ) = 4
=> 5 - 3x + 18 = 4
=> 3x = 5 + 18 - 4
=> 3x = 19
=> x = \(\frac{19}{3}\)
Vậy \(x=\frac{19}{3}\)
Bn đọc đc ko ạ?
x=0 hoặc x=6 nha