Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì | x + \(\frac{5}{3}\)| \(\ge\)0 nên A = | x + \(\frac{5}{3}\)| + 112 \(\ge\)112
dấu " = " xảy ra khi | x + \(\frac{5}{3}\)| = 0 hay x = \(\frac{-5}{3}\)
\(\Rightarrow\)GTNN của A là 112 khi | x + \(\frac{5}{3}\) | = 0 hay x = \(\frac{-5}{3}\)
b) B = | x - 2,7 | + | x + 8,5 |
B = | 2,7 - x | + | x + 8,5 | \(\ge\)| 2,7 - x + x + 8,5 | = 11,2
\(\Rightarrow\)GTNN của B là 11,2 khi ( 2,7 - x ) . ( x + 8,5 ) \(\ge\)0 hay -8,5 \(\le\)x \(\le\)2,7
c) C = \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|2x+\frac{1}{4}\right|\)
C = \(\left|x+\frac{1}{2}\right|+\left|-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|\)\(\ge\)\(\left|x+\frac{1}{2}-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|=\frac{1}{6}+\left|2x+\frac{1}{4}\right|\ge\frac{1}{6}\)
\(\Rightarrow\)GTNN của C là \(\frac{1}{6}\)khi \(\hept{\begin{cases}2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\\\left(x+\frac{1}{2}\right).\left(-\frac{1}{3}-x\right)\ge0\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{3}\end{cases}}\)
A= \(\dfrac{3x+2}{x-3}\)= \(\dfrac{3\left(x-3\right)+11}{x-3}\)= 3 + \(\dfrac{11}{x-3}\)
Để A là số nguyên <=> \(\dfrac{11}{x-3}\) là số nguyên
<=> 11 chia hết cho x-3
<=> x-3 thuộc Ư(11)
Ta có bảng sau
x-3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
Vậy x thuộc { 4;2;14;-8}
a, A= \(\dfrac{3x+2}{x-3}\)
Để A là số nguyên⇒ 3x+ 2⋮ x- 3
Vì x- 3⋮ x- 3
⇒ 3.(x- 3)⋮ x- 3
⇒ 3x- 3.3⋮ x-3
⇒ 3x- 9⋮ x-3
Mà 3x+ 2⋮ x-3
⇒ ( 3x+ 2)- ( 3x- 9)⋮ x-3
⇒ 3x+ 2- 3x+ 9⋮ x-3
⇒ ( 3x- 3x)+ ( 2+ 9)⋮ x- 3
⇒ 11⋮ x- 3
⇒ x- 3∈ Ư(11)
⇒ x- 3∈ ( -11; -1; 1; 11)
⇒ x∈ ( -8; 2; 4; 14)
Vậy....................
b, B= \(\dfrac{x^2+3x-7}{x+3}\)
Để B là số nguyên⇒ x2+3x-7 ⋮ x+3
Vì x+ 3⋮ x+ 3
⇒ x(x+3)⋮ x+ 3
⇒ x2+x.3⋮ x+ 3
Mà x2+ 3x- 7⋮ x+ 3
⇒ (x2+x.3)-( x2+3x-7)⋮ x+ 3
⇒ x2+ x.3- x2 -3x+ 7⋮ x+3
⇒ (x2-x2)+(3x- 3x)+ 7⋮ x+ 7
⇒ 7⋮ x+ 7
⇒ x+ 7∈ Ư(7)
⇒ x+ 7∈ (-7; -1; 1; 7)
⇒ x∈ ( -14; -8; -6; 0)
Vậy......................................
c, C= \(\dfrac{2x-1}{x+2}\)
Để C là số nguyên⇒ 2x-1⋮ x+2
Vì x+ 2⋮ x+2
⇒ 2( x+2)⋮ x+2
⇒ 2x+ 4⋮ x+2
Mà 2x- 1⋮ x+2
⇒ (2x+4)- (2x-1)⋮ x+2
⇒ 2x+ 4- 2x+ 1⋮ x+2
⇒ (2x-2x)+ (4+1)⋮ x+2
⇒ 5⋮ x+2
⇒ x+2∈ Ư(5)
⇒ x+2∈ (-5; -1; 1; 5)
⇒ x∈ ( -7; -3; -1; 3)
Vậy..........................................
a) 2-|3/2x-1/4|=|-5/4|
=> |3/2x-1/4| = 2-|-5/4| = 2-5/4 = 3/4
=> 3/2x-1/4 = 3/4 hoac -3/4
Khi 3/2x-1/4=3/4 => x=2/3
Khi 3/2x-1/4 = -3/4 => -1/3
Vay x la { 2/3 ; -1/3 }
b) tu la
Do x và y là hai đại lượng tỉ lệ thuận nên:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}\)
Mà \(y_1-x_1=\frac{-1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{y_1-x_1}{y_2-x_2}=\frac{-\frac{1}{4}}{\frac{8}{15}-\frac{4}{5}}=\frac{-\frac{1}{4}}{-\frac{4}{15}}=\frac{15}{16}\)
\(\frac{x_1}{x_2}=\frac{15}{16}\Rightarrow x_1=\frac{15}{16}.x_2=\frac{15}{16}.\frac{4}{5}=\frac{3}{4}\)
\(\frac{y_1}{y_2}=\frac{15}{16}\Rightarrow y_1=\frac{15}{16}.y_2=\frac{15}{16}.\frac{8}{15}=\frac{1}{2}\)
Vậy x1 = \(\frac{3}{4}\); y1 = \(\frac{1}{2}\)
Bài 2:
a: Để x>0 thì a-3>0
=>a>3
b: Để x<0 thì a-3<0
=>a<3
c: Để x=0 thì a-3=0
=>a=3
Bài 1:
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)+\left(\dfrac{-3}{4}-\dfrac{2}{9}-\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}+\dfrac{-27-8-1}{36}+\dfrac{1}{64}\)
\(=\dfrac{1}{64}\)
a) Đơn thức: \(2xy^2;\dfrac{x}{3y};5\)
b) Đa thức: \(2x+3y;\dfrac{x-1}{x+1};x^3y^2-1\)