K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

3( x - 5 )( x - 2 )( x + 2 ) + 4 = 7 + 3x3 - 15x2

<=> ( 3x - 15 )( x2 - 4 ) + 4 - 7 = 3x3 - 15x2

<=> 3x3 - 12x - 15x2 + 60 - 3 = 3x3 - 15x2

<=> 57 = 3x3 - 15x2 - 3x3 + 12x + 15x2

<=> 57 = 12x

<=> x = 57/12 = 19/4

16 tháng 10 2020

Tìm x biết:

3(x - 5)(x - 2)(x + 2) + 4 = 7 + 3x3 - 15x2

\(3\left(x-5\right)\left(x-2\right)\left(x+2\right)+4=3x^3-15x^2-12x=64\)

\(7+3^3+\left(-15\right)x^2=3x^3-15x^2+7\)

\(3x^3-15x^2-12x+64=3x^3-15x^2+7\)

\(\Rightarrow\frac{19}{4}\)

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

14 tháng 10 2018

1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)

\(\left(x+2\right)\left(2-3x-1\right)=0\)

\(\left(x+2\right)\left(1-3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)

2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)

\(3x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)

3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)

\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)

\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)

\(\left(4-x\right)\left(5x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)

4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)

\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)

\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x+3-x-1\right)=0\)

\(\left(x-1\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)

5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)

\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)

\(\left(2x-3\right)\left(-2-x+3\right)=0\)

\(\left(2x-3\right)\left(1-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

6) \(2x^2-5x-7=0\)

\(2x^2+2x-7x-7=0\)

\(2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)

7) \(x^2-x-12=0\)

\(x^2+3x-4x-12=0\)

\(x\left(x+3\right)-4\left(x+3\right)\)

\(\left(x+3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)

8) \(3x^2+14x-5=0\)

\(3x^2+15x-x-5=0\)

\(3x\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)

3 tháng 8 2015

1.thay x=25 vào biểu thức A ta có:

25^3-15.25^2+75.25=8125

2.

a,x^3-3^3-x(x^2-2^2)-1=0

x^3-27-x^3+4x-1=0

4x-28=0

4(x-7)=0

X=7

b,(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-6(x^2-2x+1)+10=0

x^3+3x^2+3x+1-X^3+3x^2-3x+1-6x^2+12x-6+10=0

12x+6=0

6(2x+1)=0

2x+1=0

2x=-1

x=-1/2

**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

11 tháng 10 2019

1)  (3x+4)(x+1) = 3x2+7x+4 đặt là a

(6x+7)2= 36x2+84x+49 = 12a+1

=> a(12a+1)- 6 = 12a2 -a -6 = (3a+2)(4a-3) = (9x2+21x+14)(12x2+28x+13)

2) (x-2)2=x2-4x+4 đặt là a

(2x-5)(2x-3)= 4x2-16x+15 =4a-1

=> a(4a-1)-5 = 4a2-a-5 = (4a-5)(a+1) = ( 4x2-16x+11)(x2-4x+5)

3) đặt (x+3)2 =a ta làm tương tự

4) (x-2)(x-10)(x-4)(x-5) = (x2-12x+20)(x2-9x+20)

đặt x2+20=a => (a-12x)(a-9x)-54x2 = a2-21ax+54x2 = (a-18x)(a-3x) = (x2-18x+20)(x2-3x+20)

4 tháng 9 2020

1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)

\(=-15x+10\)

b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)

\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)

\(=7x^2-x+9\)

c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)

\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)

\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)

\(=\left(x+2\right)\left(-4x-29\right)\)

\(=-4x^2-37x-58\)

d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)

\(=x^3-9x^2+27x-151\)

e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)

\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)

\(=5x+7\)

4 tháng 9 2020

Nhẩm ấy, ko nháp âu 

\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)

\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)

\(=2x^2-14x-x^2+x-6-x^2+16\)

\(=-13x-10\)

\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)

\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)

\(=-3x^3+6x^2-x+5\)

28 tháng 8 2020

a) Ta có: \(\left(3x+5\right)^2-\left(x+3\right)^2-8x\left(x+3\right)=12\)

\(\Leftrightarrow9x^2+30x+25-x^2-6x-9-8x^2-24x-12=0\)

\(\Leftrightarrow4=0\) (vô lý)

=> pt vô nghiệm

b) \(\left(2x-5\right)^2-\left(x-2\right)^2-\left(x-1\right)\left(3x+2\right)=8\)

\(\Leftrightarrow4x^2-20x+25-x^2+4x-4-3x^2+x+2-8=0\)

\(\Leftrightarrow-15x=-13\)

\(\Rightarrow x=\frac{13}{15}\)

28 tháng 8 2020

c) \(-2x\left(x+3\right)+\left(2x-5\right)^2=-3\left(x+2\right)\)

\(\Leftrightarrow-2x^2-6x+4x^2-20x+25+3x+6=0\)

\(\Leftrightarrow2x^2-23x+31=0\)

\(\Leftrightarrow2\left(x^2-\frac{23}{2}x+\frac{529}{16}\right)-\frac{281}{8}=0\)

\(\Leftrightarrow\left(x-\frac{23}{4}\right)^2-\left(\frac{\sqrt{281}}{4}\right)^2=0\)

\(\Leftrightarrow\left(x-\frac{23+\sqrt{281}}{4}\right)\left(x-\frac{23-\sqrt{281}}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{23+\sqrt{281}}{4}=0\\x-\frac{23-\sqrt{281}}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{281}}{4}\\x=\frac{23-\sqrt{281}}{4}\end{cases}}\)