Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
ĐKXĐ : x >= 0
pt => 3\(\sqrt{x}\) = 40 - 1 = 39
=> \(\sqrt{x}\) = 39 : 3 = 13
=> x = 169 (t/m ĐKXĐ)
Vậy x=169
Tk mk nha
\(3\sqrt{x}+1=40\)
\(ĐKXĐ:x\ge0\)
\(pt\Leftrightarrow3\sqrt{x}=39\)
\(\Leftrightarrow\sqrt{x}=13\)
\(\Leftrightarrow x=169\)
\(3\sqrt{x}+1=40\)
\(\Leftrightarrow\)\(3\sqrt{x}=40-1\)
\(\Leftrightarrow\)\(3\sqrt{x}=39\)
\(\Leftrightarrow\sqrt{x}=\frac{39}{3}\)
\(\Leftrightarrow\sqrt{x}=13\)
\(\Leftrightarrow\)\(x=169\)
\(x=-169\)
\(3\sqrt{x}+1=40\)
\(\Leftrightarrow3\sqrt{x}=39\)
\(\Leftrightarrow\sqrt{x}=13\)
\(\Leftrightarrow x=13^2\)
\(\Leftrightarrow x=169\)
Ta có :
1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20
2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)
3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Ta lại có:
\(xy=12\Rightarrow3k.4k=12\)
\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)
\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)
\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)
a) \(\sqrt{x-2}=12\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x-2=144\)
\(\Leftrightarrow x=146\) (tm)
Vậy x=146
b)\(\sqrt{x-1}=\frac{1}{3}\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow x-1=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{10}{9}\left(tm\right)\)
Vậy x=\(\frac{10}{9}\)
c)\(\sqrt{2x+\frac{5}{4}}=\frac{3}{2}\left(ĐK:x\ge\frac{-5}{8}\right)\)
\(\Leftrightarrow2x+\frac{5}{4}=\frac{9}{4}\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
vậy \(x=\frac{1}{2}\)
Tìm x biết :
\(3x\sqrt{x+1}=40\)
\(\sqrt{x+1}+2=0\)
\(\sqrt{\left(x+1\right)^2}=3\)
\(\sqrt{x-3}=4\)
b: =>căn x+1=-2(loại)
c: =>|x+1|=3
=>x+1=3 hoặc x+1=-3
=>x=-4 hoặc x=2
d: =>x-3=16
=>x=19
\(\sqrt{x}+1=40\Rightarrow\sqrt{x}=39\Rightarrow\left(\sqrt{x}\right)^2=39^2\Rightarrow x=1521\)
\(3\sqrt{x}+1=40\)
ĐK : x ≥ 0
<=> \(3\sqrt{x}=39\)
<=> \(\sqrt{x}=13\)
<=> \(x=169\)( tm )
Vậy x = 169