Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a:
|\(\sqrt2\) - \(x\)| = \(\sqrt2\)
\(\left[\begin{array}{l}\sqrt2-x=\sqrt2\\ \sqrt2-x=-\sqrt2\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=2\sqrt2\end{array}\right.\)
Vậy \(x\in\) {0; \(2\sqrt2\)}
Câu b:
|\(x-1\)| = \(\sqrt3\) + 2
\(\left[\begin{array}{l}x-1=\sqrt3+2\\ x-1=-\sqrt{3-2}\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+2+1\\ x=-\sqrt3-2+1\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+\left(2+1\right)\\ x=-\sqrt3-\left(2-1\right)\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+3\\ x=-\sqrt3-1\end{array}\right.\)
Vậy \(x\in\) {- \(\sqrt3\) - 1; \(\sqrt3\) + 3}

b) 3x - 6 - (8x + 4) - (10x + 15) = 50
=> 3x - 6 - 8x - 4 - 10x - 15 = 50
=> (3x - 8x - 10x) = 6+ 4 + 15 + 50
=> -15x = 75 => x = 75 : (-15) = -5
c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)
+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3
+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1
Vậy x = 5/3 hoặc x = 1
a) (n-1)n+11-(n-1)n=0
(n-1)n(n-1)11-(n-1)n=0
(n-1)n[(n-1)11-1]=0
(n-1)n=0 hoặc (n-1)11-1=0
n-1=0 hoặc (n-1)11 =1
n=1 hoặc n-1 =1
n=1 hoặc n =2

Xét 1+2+3+...+(n-1)
Tổng trên có số số hạng là:
(n-1-1):1+1 = n-1 (số)
Tổng trên là:
\(\frac{\left(n+1-1\right)\left(n-1\right)}{2}=\frac{n\left(n-1\right)}{2}\)
=> Thay vào, ta có:
\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}=2010\)
=> \(\sqrt{n\left(n-1\right)+n}=2010\)
=> \(\sqrt{n\left(n-1+1\right)}=2010\)
=> \(\sqrt{n.n}=2010\Rightarrow\sqrt{n^2}=2010\)
=> n = 2010
Bạn áp dụng đáp án phía dưới vào.
Có:
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+....+3+2+1}=n\)(Tính ở câu dưới)
Mà \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+....+3+2+1}=2010\)(Đề bài)
=> n = 2010