K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2022

2x³ - 22x² + 36x = 0

2x(x² - 11x + 18) = 0

2x(x² - 2x - 9x + 18) = 0

2x[(x² - 2x) - (9x - 18)] = 0

2x[x(x - 2) - 9(x - 2)] = 0

2x(x - 2)(x - 9) = 0

2x = 0 hoặc x - 2 = 0 hoặc x - 9 = 0

*) 2x = 0

x = 0

*) x - 2 = 0

x = 2

*) x - 9 = 0

x = 9

Vậy x = 0; x = 2; x = 9

Câu 1: Phân tích đa thức thành nhân tử:a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).Câu 2: Tìm x, biết:a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).a). Rút gọn biểu thức A.b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.Câu 4:1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ...
Đọc tiếp

Câu 1: Phân tích đa thức thành nhân tử:

a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).

Câu 2: Tìm x, biết:

a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.

Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).

a). Rút gọn biểu thức A.

b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.

Câu 4:

1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ nhật có chiều dài 105m, chiều rộng 68m. Ban quản lý muốn thay cỏ mới cho sân. Tính số tiền ban quản lý phải trả để mua cỏ ? biết mỗi mét vuông cỏ có giá 120 000 đồng.

2). Cho ΔABC vuông tại A (AB < AC), đương cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.

a). Chứng minh tứ giác ABDC là hình chữ nhật.

b). Trên tia đối của tia HA lấy điểm E sao cho HA = HE. Chứng minh DB là phân giác góc ADE.

c). Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H, I, K thẳng hàng.

 

 

1
13 tháng 12 2023

Câu 2:

a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)

=>\(x^2-1-x^2-3x+7=0\)

=>-3x+6=0

=>-3x=-6

=>\(x=\dfrac{-6}{-3}=2\)

b: \(2x^3-22x^2+36x=0\)

=>\(2x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-2x-9x+18\right)=0\)

=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)

=>\(x\left(x-2\right)\left(x-9\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)

Câu 4:

1: Diện tích cỏ cần thay là:

\(105\cdot68=7140\left(m^2\right)\)

Số tiền BQL sân cần trả là:

\(7140\cdot120000=856800000\left(đồng\right)\)

2:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE
=>HM//DE

=>BC//DE

=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)

Ta có: ABDC là hình chữ nhật

=>AD=BC

mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)

nên MD=MB

=>ΔMBD cân tại M

=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)

=>\(\widehat{ADB}=\widehat{EDB}\)

=>DB là phân giác của góc ADE

28 tháng 10 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

28 tháng 10 2021

a, (x+3)2 - ( 2x + 1 ).( x+3)=0              b,     x3-12x2+36x =0

=> (x+3).(x+3-2x-1)                             => x(x2-12x+36) = 0

=>(x+3).(-x+2)                                     => x(x-6)2 = 0

=> x+3=0  <=> x=-3                            => x=0        <=> x=0

     -x+2=0 <=> x=-2                                 x-6= 0    <=> x=6

31 tháng 7 2023

a) (2x - 5)2 - (5 + 2x) = 0

<=> 4x2 - 22x + 20 = 0 

\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)

\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)

b) \(27x^3-54x^2+36x=0\)

\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)

\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))

c) x3 + 8 - (x + 2).(x - 4) = 0

\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)

\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))

d) \(x^6-1=0\)

\(\Leftrightarrow\left(x^2\right)^3-1=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)

\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))

\(\Leftrightarrow x=\pm1\)

31 tháng 7 2023

\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)

27 tháng 1 2017

36x - x2 = 0

<=> x(36 - x) = 0

<=> x = 0 hoặc 36 - x = 0

<=> x = 0 hoặc x = 36

Vậy x = 0 hoặc x = 36

ung ho minh len 200 nha

3 tháng 12 2016

36x^2 - 49=0 =>(6x-7)(6x+7)=0

6x-7=0 =>x=7/6

6x+7=0=>x=-7/6

3 tháng 12 2016

\(\left(6x\right)^2=7^2\)

6x=+-7

\(x=+-\frac{7}{6}\)

29 tháng 10 2017

a) \(\Leftrightarrow x^2-5x-2x+10=0\)

\(\Leftrightarrow x\left(x-5\right)-x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)

Vậy \(x=5\)hoặc \(x=2\)

b) \(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x+7\right)\left(6x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}6x=-7\\6x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{7}{6}\end{cases}}\)

Vậy \(x=\frac{-7}{6}\)hoặc \(x=\frac{7}{6}\)

29 tháng 10 2017

a, x2-7x+10=0

<=> x2-2x-5x+10=0

<=> x.(x-2)-5.(x-2)=0

<=> (x-2).(x-5)=0

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)

b, 36x2-49=0

<=> (6x)2-72=0

<=> (6x-7).(6x+7)=0

\(\Leftrightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{7}{6}\end{cases}}\)

26 tháng 11 2016

\(36x^2-49=0\Leftrightarrow x^2=\frac{49}{36}\Leftrightarrow x=+-\frac{7}{6}\)

Vậy...

\(x^3-16x=0\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\Leftrightarrow x=+-4\end{cases}}\)

Vậy...

7 tháng 10 2019

\(\left(36x^2-25\right)-\left(6x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(6x+5\right)\left(6x-5\right)-\left(6x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(6x+5\right)\left(6x-5-x-1\right)=0\)

\(\Leftrightarrow\left(6x+5\right)\left(5x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{6}\\x=\frac{6}{5}\end{cases}}\)

7 tháng 10 2019

\(\left(36x^2-25\right)-\left(6x+5\right)\left(x+1\right)=0\Leftrightarrow\left(6x-5\right)\left(6x+5\right)-\left(6x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(6x+5\right)\left(5x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{-5}{6}\\x=\frac{6}{5}\end{cases}}\)