Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)
\(\Rightarrow\frac{7x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)
\(\Rightarrow\frac{7x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7x=25x\)
\(\Rightarrow x=0\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
\(\Rightarrow\left(4x-3\right)^4-\left(4x-3\right)^2=0\)
\(\Rightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(4x-3\right)^2=0\\\left(4x-3\right)^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3=0\\4x-3=-1\\4x-3=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\\x=1\end{cases}}\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
... câu cuối bn lm dài dòng quá r ạ -)) cái dòng sra là bỏ luôn dấu GTTĐ của VT r ạ :))
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
Giải:
a) Để đa thức có nghiệm thì
\(x^2-4x=0\)
\(\Leftrightarrow\left(x-4\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy ...
b) Để đa thức có nghiệm thì
\(\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy ...
c) Để đa thức có nghiệm thì
\(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\end{matrix}\right.\)
Vậy ...
Các ý còn lại làm tương tự.
a) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
...
..
f) \(\Leftrightarrow x^2+\dfrac{7}{2}x+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{7}{4}x\right)+\left(\dfrac{7}{4}x+\dfrac{7.7}{4.4}\right)+\dfrac{5}{2}-\dfrac{49}{16}=0\)
\(\Leftrightarrow x\left(x+\dfrac{7}{4}\right)+\dfrac{7}{4}\left(x+\dfrac{7}{4}\right)=\dfrac{49-5.8}{16}=\dfrac{9}{16}\)
\(\Leftrightarrow\left(x+\dfrac{7}{4}\right)^2=\left(\dfrac{3}{4}\right)^2\)
\(\left|x+\dfrac{7}{4}\right|=\dfrac{3}{4}\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{4}-\dfrac{3}{4}=\dfrac{-5}{2}\\x=-\dfrac{7}{4}+\dfrac{3}{4}=-1\end{matrix}\right.\)
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
\(a\)\(,\)\(\left(2x-3\right)^2\)\(=\)\(4^2\)(1)
mà ta có \(4^2\)=\(\left(-4\right)^2\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\left(2x-3\right)^2\)=\(4^2\)=\(\left(-4\right)^2\)
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2x=7\\2x=-1\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)(thỏa mãn \(x\)\(\in\)\(Q\))
Vậy \(\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{-1}{2}\end{cases}}\)
\(b,\)\(\left(3x-2\right)^5\)\(=\)\(-243\)
\(\Rightarrow\)\(\left(3x-2\right)^5\)\(=\)\(\left(-3\right)^5\)
\(\Rightarrow\)\(3x-2=-3\)
\(\Rightarrow\)\(3x=-1\)
\(\Rightarrow\)\(x=\frac{-1}{3}\)(thỏa mãn \(x\in Q\))
Vậy \(x=\frac{-1}{3}\)
\(c,\)\(\left(7x+2\right)^{-1}=3^{-2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{3^2}\)
\(\Rightarrow\frac{1}{7x+2}=\frac{1}{9}\)
\(\Rightarrow\)\(7x+2=9\)
\(\Rightarrow\)\(7x=7\)
\(\Rightarrow x=1\)(thỏa mãn \(x\in Q\))
Vậy \(x=1\)
A,\(\left(2x-3\right)^2=4^2\)
\(2x-3=4\)
\(2x=7\)
\(x=3,5\)
Tương tự
1, \(_{x_1=\frac{7+\sqrt{89}}{4}};x_2=\frac{7-\sqrt{89}}{4} \)
x= -5 hoặc 5