Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x-1\right)^4\left(2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
\(2x-3+3|x-1|=4x+1.\)
\(\Leftrightarrow3|x-1|=2x+4\)
*Với x < 1 ta có phương trình:
\(3\left(-x+1\right)=2x+4\)
\(\Leftrightarrow-3x+3=2x+4\)
\(\Leftrightarrow5x+1=0\)
\(\Leftrightarrow x=-\frac{1}{5}\)(TM)
*Với \(x\ge1\)ta có phương trình:
\(2x-3+3\left(x-1\right)=4x+1\)
\(\Leftrightarrow2x-3+3x-3=4x+1\)
\(\Leftrightarrow x-7=0\)
\(\Leftrightarrow x=7\)(TM)
Vậy ............
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
a) Có: |2x - 1| + |2x - 5| = |2x - 1| + |5 - 2x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=\left|4\right|=4\)
Mà theo đề bài: |2x - 1| + |2x - 5| = |2x - 1| + |5 - 2x| = 4
\(\Rightarrow\begin{cases}2x-1\ge0\\2x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}2x\ge1\\2x\le5\end{cases}\)\(\Rightarrow1\le2x\le5\)
\(\Rightarrow\frac{1}{2}\le x\le\frac{5}{2}\)
Vậy \(\frac{1}{2}\le x\le\frac{5}{2}\) thỏa mãn đề bài
* Nếu \(x\le\frac{1}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=-\left(2x-1\right)-\left(2x-5\right)=4\)
\(\Rightarrow-2x+1-2x+5=4\)
\(\Rightarrow-4x+6=4\)
\(\Rightarrow x=\frac{1}{2}\) (chọn)
* Nếu \(\frac{1}{2}< x< \frac{5}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=2x-1-\left(2x-5\right)=4\) (luôn đúng)
* Nếu \(x\ge\frac{5}{2}\) ta có:
\(\left|2x-1\right|+\left|2x-5\right|=2x-1+2x-5=4\)
\(\Rightarrow4x-6=4\)
\(\Rightarrow x=\frac{5}{2}\) (chọn)
Vậy \(\frac{1}{2}\le x\le\frac{5}{2}\)