Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
1) (x + 2016)2016 + |y - 2017|2017 = 0
\(\Leftrightarrow\hept{\begin{cases}\left(x+2016\right)^{2016}=0\\\left|y-2017\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2016=0\\y-2017=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2016\\y=2017\end{cases}}\)
\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)
\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)
Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)
\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)
\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)
Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)
Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)
=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)
, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
có/x+y/ lớn hơn hoặc bằng
/x/+/y/ dấu bằng xảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 =>/x+y/=/x/+/y/ (1)
lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0
=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)
từ (1) và (2)
=>/x+y/ lớn hơn hoặc bằng 2
=> MIN /x+y/ =2
dấu bằng xảy ra
<=> /x+y/=2
hay /x/+/y/ \(=2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}=>x=y\)
mà /x+y / =2
TH1 x+y=2=>x=y=1
thay vào M ta tính được M=\(\dfrac{3}{4}\)
TH2 x+y =-2 =>x=y=-1
thay vào M ta được
M=\(\dfrac{3}{4}\)
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
|x-2016|2016+|x-2017|2016=1
|x-2016|2016=1 hoặc |x-2017|2016=1
th1:|x-2016|2016=1
|x-2016|2016=12016
x-2016=1
x=1+2016
x=2017
th2:
làm tương tự