Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \({\mid x^2 + 4\mid}=4x\) (ĐK: x\(\geq\)0)
\(\implies \)\(x^2 +4= 4x\)
hoặc \(x^2+4=-4x\)
\(\implies\)\(x^2-4x+4=0\)
hoặc \(x^2+4x+4=0\)
\(\implies\)x=2 (t/m)
hoặc x=-2 (ko t/m)
Vậy x=2
b, \(\mid2-4x\mid=2x+1\)
(ĐK: \(x\geq-1/2\))
\(\implies\) 2 -4x =2x+1
hoặc 2 -4x = -2x-1
\(\implies\)x= 1/6 (t/m)
hoặc x= 3/2 (t/m)
Vậy x=1/6 hoặc x=3/2
c,\(\mid\mid x\mid-7\mid=x+5\) (đk: \(x\geq-5\) )
TH1: \(\mid x \mid -7= x+5\) \(\implies\)\(\mid x \mid =x+12 \) (đk:\(x\geq -12\) )
\(\implies\)x = x+12
hoặc -x =x+12
\(\implies\)vô nghiệm
hoặc x = -6 (ko t/m)
TH2: \(\mid x \mid -7= -x-5\) \(\implies\) \(\mid x \mid =-x+2\) (đk: \(x\leq2\) )
\(\implies\)x = -x+2
hoặc -x = -x+2
\(\implies\)x=1 (t/m)
hoặc vô nghiệm
Vậy x=1
Ta có: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\ge0\)
\(\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}=4x\)
\(\Leftrightarrow3x+\frac{13}{12}=4x\)
\(\Leftrightarrow x=\frac{13}{12}\left(tm\right)\)
\(|x^2+4|=4x\Rightarrow\orbr{\begin{cases}x^2+4=4x\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\\x^2+4=-4x\Rightarrow x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x+2=0\Rightarrow x=-2\end{cases}}\)
\(|2-4x|=2x-1\Rightarrow\orbr{\begin{cases}2-4x=2x-1\Rightarrow-4x-2x=-1-2\Rightarrow-6x=-3\Rightarrow x=\frac{1}{2}\\2-4x=-2x+1\Rightarrow-4x+2x=1-2\Rightarrow-2x=-1\Rightarrow x=\frac{1}{2}\end{cases}}\)
| x2 + 4 | = 4x
\(\Rightarrow\) x2 + 4 = \(\pm\)4x
TH1: x2 + 4 = 4x
\(\Rightarrow\)x2 +4 - 4x = 0
\(\Rightarrow\)( x -2 )2 = 0
\(\Rightarrow\)x - 2 = 0
\(\Rightarrow\) x= 2
| 2 - 4x | = 2x + 1
\(\Rightarrow\)2 - 4x = \(\pm\) 2x + 1
TH1 : Tự làm tiếp nha :))
a) \(4x^2-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\2x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=\frac{3}{4}\\x-1=-\frac{3}{4}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7}{4}\\x=\frac{1}{4}\end{array}\right.\)
c) \(\sqrt{x}=4\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow x=16\)
d) \(\sqrt{x+1}=2\left(ĐKx\ge-1\right)\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|=4x.\)
Điều kiện \(4x\ge0\)nên
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}=4x\)
\(\Leftrightarrow3x+\frac{13}{12}=4x\)
\(\Leftrightarrow4x-3x=\frac{13}{12}\)
\(\Leftrightarrow x=\frac{13}{12}\)
2 - 4X = 4 (1-X) +2
2 - 4X = 4 - 4x + 2
2 - 4X = 6 - 4X
2 = 6 (vô lý)
không có giá trị nào của x thỏa mãn đề bài