Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0
nên x + 1/2 = 0 hoặc x-3 = 0
vậy x = -1/2 và x = 3
Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3
b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0
Vậy x = 0 hoặc x = 1
Đa thức D(x) có 2 nghiệm là x1= 0 và x2 = 1
c, Thay E(x) = 0
nên x3 + 8 = 0 => x3 = -8 => x = -2
Vậy đa thức E(x) có 1 nghiệm là x = -2
d, Thay F(x) = 0 nên 2x - 5 + (x-17) = 0
=> 2x - 5 + x - 17 = 0
=> 3x -22 = 0
=> 3x = 22
x = 22/3
Vậy đa thức F(x) có 1 nghiệm là x = 22/3
e, Thay C(x) = 0 nên x2 - 9 = 0
x2 = 9 => x = 3 hoặc x = -3
Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3
f, Thay A(x) = 0 nên x2 - 4x = 0
=> x.(x - 4) = 0
=> x = 0 và x = 4
Vậy đa thức A(x) có 2 nghiệm là x1=0 và x2 = 4
g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0
Vậy 2x + 4 = 0 và 7-14x =0
=> x = -2 và x = 1/2
Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2
h, G(x) = 0 nên (3x-5) - (18-6x) = 0
=> 3x - 5 - 18 + 6x = 0
=> 9x - 23 = 0
=> 9x = 23
x = 23/9
Vậy đa thức này có 1 nghiệm là x = 23/9
a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)
B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)
Vậy nghiệm của B(x) là -1/2 và 3
b) D(x) = \(x^2-x\)
D(x) = 0 <=> \(x^2-x=0\)
<=> \(x\left(x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy nghiệm của D(x) là 0 và 1
c) E(x) = \(x^3+8\)
E(x) = 0 <=> x3 + 8 = 0
<=> x3 = -8
<=> x3 = -23
<=> x = 3
Vậy nghiệm của E(x) là 3
d) F(x) = 2x - 5 + ( x - 17 )
F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0
<=> 2x + x + ( -5 - 17 ) = 0
<=> 3x - 22 = 0
<=> 3x = 22
<=> x = 22/3
Vậy nghiệm của F(x) là 22/3
f) A(x) = x2 - 4x
A(x) = 0 <=> x2 - 4x = 0
<=> x( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy nghiệm của A(x) là 0 và 4
g) H(x) = ( 2x + 4 )( 7 - 14x )
H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )
<=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
Vậy nghiệm của H(x) là -2 và 1/2
h) G(x) = ( 3x - 5 ) - ( 18 - 6x )
G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0
<=> 3x - 5 - 18 + 6x = 0
<=> 3x - 23 = 0
<=> 3x = 23
<=> x = 23/3
Vậy nghiệm của G(x) là 23/3
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
len google di ban
mk chua hoc bai nay