Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
a) x + 15 = 36 - 2x
x + 15 = 36 - (x + x )
15 =36 - ( x + x) - x
15 = 36 - x - x - x
15 = 36 - 3x
3x = 36 - 15
3x = 21
x = 21 : 3
=> x = 7
b) (x - 7) - (2x +5) = -14
x - 7 -( 2x + 5) = -14
x - (2x + 5) = -14 + 7 = -7
x - 2x - 5 = -7
x - 2x = -7 + 5 = -2
x - x + x = 2
x = 2 (-x + x cũng bằng chính nó)
=> x = 2
c) (x - 12) - 15 = (-7 + 20) - (18+x)
(x - 12) - 15 = 13 - (18 + x)
(x - 12) - 15 = 13 - 18 - x
(x - 12) - 15 = -5 - x
15 = (x - 12 ) - (-5 - x)
15 = x - 12 + 5 + x
15 = x + (-12) + 5 + x
15 = 2x + [(-12) + 5]
15 = 2x + -7
2x = -7 + 15
2x = 8
x = 8 : 2
=> x = 4
..................
a: (x+2)(x+5)<0
=>x+5>0 và x+2<0
=>-5<x<2
mà x là số nguyên
nên \(x\in\left\{-4;-3;-2;-1;0;1\right\}\)
b: \(\left(x^2-8\right)\left(x^2+10\right)< 0\)
\(\Leftrightarrow x^2-8< 0\)
\(\Leftrightarrow x^2< 8\)
mà x là số nguyên
nên \(x\in\left\{0;1;-1;2;-2\right\}\)
c: (x-2)(x+1)<0
=>x+1>0 và x-2<0
=>-1<x<2
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
a, x^2 =9
=> x^2= 3^2
=> x= 3
Vậy x= 3
b, 4^x = 64
=> 4^x = 4^3
=> x= 3
Vậy x= 3
c, 10^x= 1
Vì mọi số ^0 đều =1
=> x= 0
Vậy x= 0
e, x^n = 1 (nEN)
=> Vì tất cả mọi số có mũ 0 đều =1 và xEN
=> x E {số nguyên, vd: 1, 2,3....}
Vậy x E {1,2,3.....}
Nếu là tìm "cặp số nguyên" thì phải có x và y hoặc x với 1 chữ nào đấy. Bạn kiểm tra lại đề xem, chắc chỉ là "số nguyên x" thôi chứ?
\(x^2+3x+7⋮x+3\)
\(\Leftrightarrow xx+3x+7⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+7⋮x+3\)
Do \(x\left(x+3\right)⋮x+3\) nên \(7⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Ta có bảng sau:
\(x+3\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(-4\) | \(-2\) | \(-10\) | \(4\) |
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
a) ( x + 3 )3 : 3 - 1 = -10
( x + 3 )3 : 3 = -10 + 1
( x + 3 )3 = -9 * 3
x + 3 = \(\sqrt[3]{-27}\)
x = -3 - 3
x = -6
b) 3 | x - 1 | + 5 = 17
3 | x - 1 | = 17 - 5
| x - 1 | = 12 : 3
| x - 1 | = 4
( 1 ) x - 1 > 0 => x - 1 = 4 => x = 5
( 2 ) x - 1 < 0 => x - 1 = -4 => x = -3
Vậy S = { -3 ; 5 }