Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(x\left(x+2\right)^2=\frac{45}{x}\left(x+4\right)\)
\(x\left(x^2+2.x.2+2^2\right)=\frac{45}{x}.x+\frac{45}{x}.4\)
\(x\left(x^2+4x+4\right)=45+\frac{180}{x}\)
\(x^3+4x^2+4x=45+\frac{180}{x}\)
\(x^3+4x^2+4x-\frac{180}{x}=45\)
( Phần cn lại bn tự lm nha) - Mak hình như mk sai rùi - th kệ ik - tk sai cũng đc)
a) (5x-1)2-(5x-4)(5x+4)=7
\(25x^2-10x+1-\left(25x^2+20x-20x-16\right)=7\)
\(25x^2-10x+1-25x^2-20x+20x+16=7\)
\(-10x=7-1-16\)
\(-10x=-10\)
\(x=1\)
b) (x+5)2-x2=45
\(x^2+10x+25-x^2=45\)
\(10x=45-25\)
\(10x=20\)
\(x=2\)
Học tốt !!! có gì ko hiểu thì họi lại nhé em
a) (5x - 1)2 - (5x - 4)(5x + 4) = 7
25x2 - 10x + 1 - 25x2 + 16 = 7
-10x + 17 = 7
-10x = 7 - 17
-10x = -10
x = 1
b) (x + 5)2 - x2 = 45
x2 + 10x + 25 - x2 = 45
10x + 25 = 45
10x = 45 - 25
10x = 20
x = 2
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
ĐK: \(x\ne-4\)
\(x\left(x+2\right)^2=\frac{45}{x+4}\)
=> \(x\left(x+2\right)^2\left(x+4\right)=45\)
<=> \(\left(x^2+4x\right)\left(x^2+4x+4\right)-45=0\)
Đặt: \(x^2+4x+2=t\)
Khi đó pt trở thành:
\(\left(t-2\right)\left(t+2\right)-45=0\)
<=> \(t^2-49=0\)
<=> \(t=\pm7\)
đến đây thay trở lại đc pt bậc 2 ez bn lm nốt nhé
Ta có : \(x\left(x+4\right)\left(x+2\right)^2=45\)
\(\Rightarrow\left(x^2+4x\right)\left(x^2+4x+4\right)=45\left(1\right)\)
Đặt \(x^2+4x+2=a\)
Thay \(a\)vào \(\left(1\right)\), khi đó :
\(\left(1\right)\Leftrightarrow\left(a-2\right)\left(a+2\right)=45\)
\(\Rightarrow a^2-4=45\)
\(\Rightarrow a^2=49\)
\(\Rightarrow\orbr{\begin{cases}a=7\\a=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+4x+2=7\\x^2+4x+2=-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+4x-5=0\\x^2+4x+4=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x+5\right)\left(x-1\right)=0\\\left(x+2\right)^2=-5\end{cases}}\)(Vô lí, do \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
Vậy \(x\in\){\(-5;1\)}