
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


câu này sai đề (x -3)3 -(x-3)(x2 +3x+9) +9(x+1)2 = 15

b)(x+3)\(^2\)-x\(^2\)=9
(x+3-x)(x+3+x)=9
3(2x+3)=9
2x+3=3
2x=0
x=0
c)\(x^2+4x+4+x^2-6x+9-2x^2+2=9\)
-2x+15=9
-2x=-6
x=3
a) x(x-2) - 5x + 10 = 0
x(x - 2) - 5(x - 2)=0
(x - 2)(x - 5)=0
=> x=2 ; x=5


\(=>x^3+6x^2+12x+8-x^3+27+6x^2+12x+6=15\)
\(=>12x^2+24x+41-15=0\)
\(=>12x^2+24x+26=0\)
\(=>12\left(x^2+2x+1\right)+14=0\)
\(=>12\left(x+1\right)^2+14=0\)
\(=>2[6\left(x+1\right)^2+7]=0\)
\(=>6\left(x+1\right)^2+7=0\)
Mà \(\left(x+1\right)^2\ge0\)nên \(6\left(x+1\right)^2+7>0\)
Vậy ko có giá trị x nào thỏa mãn đề bài

a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'

(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49
<=>24x+25=49
<=>24x=24
<=>x=1
x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42
<=>x(x2-25)-(x3+8)=42
<=>x3-25x-x3-8=42
<=>-25x-8=42
<=>-25x=50
<=>x=-2

\(a,\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\cdot\left(x+1-1\right)=0\)
\(x\cdot\left(x+1\right)=0\)
\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x+25=49\)
\(\Leftrightarrow24x=24\Leftrightarrow x=1\)

a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)
\(\Leftrightarrow x^3-27+4x-x^3=1\)
\(\Leftrightarrow4x-27=1\Leftrightarrow4x=28\Leftrightarrow x=7\)
b) \(\left(x-2\right)^3-\left(x-2\right)\left(x^2+2x+4\right)+6\left(x-2\right)\left(x+2\right)=60\)
\(\Leftrightarrow x^3-6x^2+12x+4-x^3-8+6\left(x^2-4\right)=60\)
\(\Leftrightarrow-6x^2+12x-4+6x^2-24=60\)
\(\Leftrightarrow12x-28=60\Leftrightarrow x=\frac{22}{3}\)
a) (x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
x^3 + 3x^2 + 9x - 3x^2 - 9x - 27 + 2x^2 - x^3 + 4x - 2x^2 = 1
4x - 27 = 1
4x = 28
x = 7
b) (x - 2)^3 - (x - 2)(x^2 + 2x + 4) + 6(x - 2)(x + 2) = 60
x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 - x(x^2 + 2x + 4) + 2(x^2 + 2x + 4) + 6x - 24 = 60
x^3 + 12x - 32 - x^2 - 2x^2 - 4x + 2x^2 + 4x + 8 = 60
12x - 24 = 60
12x = 60 + 24
12x = 84
x = 7
Sửa đề: \(x\left(x+3\right)-x^2+9=0\\ \Leftrightarrow x^2-9-x\left(x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-3-x\right)=0\\ \Leftrightarrow-3\left(x+3\right)=0\\ \Leftrightarrow x+3=0\\ \Leftrightarrow x=-3\)