Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có công thức như sau :
\(a^{-x}=?\)
lời giải công thức này như sau :
\(a^{-x}=\left(\frac{1}{a}\right)^x\)
vậy bài cũng gải tương tự
\(32^{-x}.16^x=\left(\frac{1}{32}\right)^x.\left(16^x\right)\)
\(=\left(\frac{16}{32}\right)^x=\left(\frac{1}{2}\right)^x=2^{-x}\)
mà \(2048=2^{11}\)
\(\Rightarrow-x=11\)
\(\Leftrightarrow x=-11\)
vậy \(x=-11\)
\(\Rightarrow\)\(\left(\frac{1}{32}\right)^x\cdot16^x=2048\)
\(\Rightarrow\)\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-11}\)
\(\Rightarrow\)\(x=-11\)
\(\frac{2030-x}{15}+\frac{2041-x}{13}+\frac{2048-x}{11}+\frac{1961-x}{9}=0\)
\(\Leftrightarrow\frac{2030-x}{15}-1+\frac{2041-x}{13}-2+\frac{2048-x}{11}-3+\frac{1961-x}{9}+6=0\)
\(\Leftrightarrow\frac{2015-x}{15}+\frac{2015-x}{13}+\frac{2015-x}{11}+\frac{2015-x}{9}=0\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Mà \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow2015-x=0\Leftrightarrow x=2015\)
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{3^n}{27^n}=\frac{1}{9}\)
\(\Rightarrow\left(\frac{3}{27}\right)^n=\frac{1}{9}\)
\(\Rightarrow\left(\frac{1}{9}\right)^n=\frac{1}{9}\)
\(\Rightarrow n=1\)
\(7.4^{x+1}-5.4^{x+1}=2048\)
\(\Rightarrow4^{x+1}.\left(7-5\right)=2048\)
\(\Rightarrow4^{x+1}.2=2048\)
\(\Rightarrow4^{x+1}=2048:2\)
\(\Rightarrow4^{x+1}=1024\)
\(\Rightarrow4^{x+1}=4^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=5-1\)
\(\Rightarrow x=4\)
Vậy \(x=4.\)
Chúc bạn học tốt!
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
\(A=1+3+3^2+3^3+...+3^{101}\)
\(3A=3+3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\left(3^{101}-1\right):2\)
Thu gọn tổng sau:
A=1+3+32+33+...+3100
B= 2100-299-298-297-...-22-2
C= 3100-399+398-397-...+32-3+1
1)
a) \(2xy^2\left(x^2-2y\right)=2xy^2x^2-2xy^2\cdot2y=2x^3y^2-4xy^3\)
b) \(\left(x-3\right)\left(x+3\right)=x^2-3^2=x^2-9\)
c) \(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
2)
a) \(2\left(x-4\right)-3\left(2x+7\right)=5\left(x-3\right)+12\) (1)
\(\Leftrightarrow2x-8-6x-21=5x-15+12\)
\(\Leftrightarrow2x-6x-5x=-15+12+8+21\)
\(\Leftrightarrow-9x=26\)
\(\Leftrightarrow x=-\dfrac{26}{9}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-\dfrac{26}{9}\right\}\)
b) \(x\left(x+2\right)-x=2\) (2)
\(\Leftrightarrow x^2+2x-x=2\)
\(\Leftrightarrow x^2+x=2\)
\(\Leftrightarrow x^2+x-2=2-2\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{-2;1\right\}\)
3)
\(2^m+2^n=2048\)
\(\Leftrightarrow2^m+2^n=2^8\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)
Nếu:
♦ m - n = 0 (vô lý)
♦ m - n > 0:
\(\Rightarrow2^{m-n}-1\) lẻ mà \(2^8\) chẵn suy ra \(2^{m-n}-1=1\Rightarrow m=n+1\)
\(\Rightarrow2^n=2^8\Rightarrow n=8;m=9\)
Vậy \(n=8;m=9\)
Thấy: `2 xx 2048 = 4096 = 2^12 = 2^6 xx 2^6 = 64 xx 64`.
`-> x = 64 (64^64 = 2^2048)`.
1