Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-9+\left(2x-3\right)\left(x+7\right)=0\)
\(\Rightarrow\left(4x^2-9\right)+\left(2x-3\right)\left(x+7\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x+3\right)+\left(2x-3\right)\left(x+7\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x+3+x+7\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x+10\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-3=0\\3x+10=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Ta có:
\(3x-\frac{x^2}{x^2-9}=0\)
\(\Leftrightarrow3x=\frac{x^2}{x^2-9}\)
\(\Leftrightarrow3x\left(x^2-9\right)=x^2\)
\(\Leftrightarrow3x^3-27x^2=x^2\)
\(\Leftrightarrow3x^3=x^2+27x^2\)
\(\Leftrightarrow3x^3=28x^2\)
\(\Leftrightarrow3x=28\)
\(\Leftrightarrow x=\frac{28}{3}\)
Vậy \(x=\frac{28}{3}\)
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
b) \(x^2-2x-3=0\)
\(D=b^2-4ac\)
\(\left(-2\right)^2-\left(4\left(1.3\right)\right)=16\)
\(x_{1,2}=\frac{-b-\sqrt{D}}{2a}=\frac{2-\sqrt{16}}{2}\)
\(x=1;-3\)
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
ko phải đâu, mk vd nhé:
cái kia mình ra là \(\left(x-3\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{8}+\frac{1}{10}-\frac{1}{12}\right)\) = 0
nếu mà như đề bài của bạn thì nó phải thêm -5 ở đuôi nữa chứ \(\left(x-3\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{8}+\frac{1}{10}-\frac{1}{12}\right)-5\) = 0
Như thế này này!
thế thì sao x = 3 được!
\(x+\frac{7}{x}=9\Leftrightarrow\frac{x^2+7}{x}=9\Leftrightarrow x^2+7=9x\)
\(\Leftrightarrow x^2-9x+7=0\)
Ta có : \(\left(-9\right)^2-4.7=81-28=53\)
\(x_1=\frac{9-\sqrt{53}}{2};x_2=\frac{9+\sqrt{53}}{2}\)