Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x=2y\)và \(x+y=10\)
Ta cs : \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{2}=2\Leftrightarrow x=4\)
\(\Leftrightarrow\frac{y}{3}=2\Leftrightarrow y=6\)
\(c,\frac{x}{2}=\frac{y}{5}\)và \(x+2y=12\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{5}=\frac{x+2y}{2+2.5}=\frac{12}{12}=1\)
\(\Leftrightarrow\frac{x}{2}=1\Leftrightarrow x=2\)
\(\Leftrightarrow\frac{y}{5}=1\Leftrightarrow y=5\)
a, Xét : \(\frac{x}{-30}=-\frac{12}{20}=-\frac{3}{5}\Leftrightarrow5x=90\Leftrightarrow x=18\)
Xét : \(\frac{-36}{y}=\frac{-3}{5}\Leftrightarrow3y=180\Leftrightarrow y=60\)
Vậy \(x=18;y=60\)
b, \(\frac{x-1}{7}=\frac{2y+5}{3}\)và \(x+2y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{7}=\frac{2y+5}{3}=\frac{x+2y-1+5}{7+3}=\frac{-16+4}{10}=\frac{-12}{10}=-\frac{6}{5}\)
\(\Leftrightarrow\frac{x-1}{7}=-\frac{6}{5}\Leftrightarrow5x-5=-42\Leftrightarrow5x=-37\Leftrightarrow x=-\frac{37}{5}\)
\(\Leftrightarrow\frac{2y+5}{3}=-\frac{6}{5}\Leftrightarrow10y+25=-18\Leftrightarrow10y=-43\Leftrightarrow y=-\frac{43}{10}\)
a. \(\left(x+8\right)⋮\left(x+4\right)\)
\(\Rightarrow\left(x+4\right)+4⋮\left(x+4\right)\)
Mà \(\left(x+4\right)⋮\left(x+4\right)\)
\(\Rightarrow4⋮\left(x+4\right)\)
\(\Rightarrow x+4\in\text{Ư} \left(4\right)=\left\{1;2;4\right\}\)
Ta có 3 trường hợp :
TH1 : \(x+4=1\Rightarrow x\notin N\) ( Loại )
TH2 : \(x+4=2\Rightarrow x\notin N\)(Loại )
TH3 : \(x+4=4\Rightarrow x=0\)
Vậy x = 0
a,Vì : \(x+8⋮x+2\)
Mà : \(x+2⋮x+2\)
\(\Rightarrow\left(x+8\right)-\left(x+2\right)⋮x+2\Rightarrow x+8-x-2⋮x+2\)
\(\Rightarrow6⋮x+2\Rightarrow x+2\inƯ\left(6\right)\)
Mà : \(Ư\left(6\right)=\left\{1;2;3;6\right\}\) ; \(x+2\ge2\Rightarrow x+2\in\left\{2;3;6\right\}\)
\(\Rightarrow x\in\left\{0;1;4\right\}\)
Vậy ...
b,Ta có : \(2y+7⋮y-1\) ; \(y-1⋮y-1\Rightarrow2\left(y-1\right)⋮y-1\Rightarrow2y-2⋮y-1\)
\(\Rightarrow\left(2y+7\right)-\left(2y-2\right)⋮y-1\Rightarrow2y+7-2y+2⋮y-1\)
\(\Rightarrow9⋮y-1\Rightarrow y-1\in\left\{1;3;9\right\}\Rightarrow y\in\left\{2;4;10\right\}\)
Vậy ...
c, Vì : \(x\in N\Rightarrow x-5\in N\)
\(y\in N\Rightarrow y+3\in N\left(y+3\ge3\right)\)
\(\Rightarrow x-5,y+3\inƯ\left(7\right)\)
Mà : \(Ư\left(7\right)=\left\{1;7\right\};y+3\ge3\)
\(\Rightarrow x-5=1\Rightarrow x=6;y+3=7\Rightarrow y=4\)
Vậy ...
Có: \(\dfrac{x}{8}=\dfrac{y}{5}\) và \(x+2y=-36\) (1)
Áp dụng tính chất của dãy tỉ số bằng nhau và (1), ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{2y}{10}=\dfrac{x+2y}{8+10}=\dfrac{-36}{18}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\cdot8=-16\\y=-2\cdot5=-10\end{matrix}\right.\)
Theo mình đây là Toán lớp 7 chứ nhỉ?