K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

\(\frac{3a^3\left(x^2-1\right)^4}{3a^3\left(x^2-1\right)^3}=15\)

\(x^2-1=15\)

\(x^2=15+1\)

\(x^2=16\)

\(x^2=\left(\pm4\right)^2\)

\(x=\pm4\)

\(\frac{3x^5-4x^3}{x^3}-\frac{\left(3x+1\right)^3}{3x+1}-\frac{3x^7}{x^5}=0\)

\(\frac{x^3\left(3x^2-4\right)}{x^3}-\left(3x+1\right)^2-3x^2=0\)

\(3x^2-4-\left(3x+1\right)^2-3x^2=0\)

\(-4-\left(3x+1\right)^2=0\)

Không tìm được x thoả mãn yêu cầu vì \(-4-\left(3x+1\right)^2\le-4< 0\)

\(\frac{x^2+\frac{1}{2}x}{\frac{1}{2}x}-\frac{\left(2x+1\right)^3}{\left(2x+1\right)^2}+\frac{\left(x+1\right)^5}{\left(x+1\right)^2}=0\)

\(\frac{\frac{1}{2}x\left(2x+1\right)}{\frac{1}{2}x}-\left(2x+1\right)+\left(x+1\right)^3=0\)

\(\left(2x+1\right)-\left(2x+1\right)+\left(x+1\right)^3=0\)

\(x+1=0\)

\(x=-1\)

28 tháng 3 2018

       \(2x-2=8-3x\)

\(\Leftrightarrow\)\(2x+3x=8+2\)

\(\Leftrightarrow\)\(5x=10\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

         \(x^2-3x+1=x+x^2\)

\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)

\(\Leftrightarrow\)\(-4x=-1\)

\(\Leftrightarrow\)\(x=\frac{1}{4}\)

Vậy...

28 tháng 3 2018

mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}