Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trừ 1 vào mỗi tỉ số,ta đc:
\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}-1=\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}=\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(mà\frac{1}{2011}<\frac{1}{2010}<\frac{1}{2009}<\frac{1}{2008}\Rightarrow\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=>x-2012=0
=>x=2012
vậy x=2012
Ta có:
\(\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)
\(\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)
\(\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
\(x=-2012\)
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-4}{2008}\)
<=> \(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-3}{2009}-1\right)=\left(\dfrac{x-4}{2008}-1\right)\)
<=> \(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2009}-\dfrac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
<=> x - 2012 = 0
<=> x = 2012
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}\)\(=\frac{x-4}{2008}\)
\(\Leftrightarrow\frac{x-2012+2011}{2011}+\frac{x-2012+2010}{2010}+\frac{x-2012+2009}{2009}=\frac{x-2012+2008}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2011}+1+\frac{x-2012}{2010}+1+\frac{x-2012}{2009}+1=\frac{x-2012}{2008}+1\)
\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+2=\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2008}-\frac{x-2012}{2009}-\frac{x-2012}{2010}-\frac{x-2012}{2011}-2=0\)
=>Sai đề nha bạn!
áp dụng tính chất dãy tỷ số= nhau, ta có:
x-1/2011+x-2/2010+x-3/2009+x-4/2008=x-1+x-2+x-3+x-4/2011+2010+2009+2008
=x-1+x-2+x-3+x-4/8038
=(x-x+x-x)+[(1+4)+(-2+-3)]/8038
=0/8038
=0
a) x+2x+3x+4x+...+2011x = 2012.2013
\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156
\(\Rightarrow\) x.2023066 = 4050156
\(\Rightarrow\) x = 4026/2011
http://olm.vn/hoi-dap/question/425074.html
dzô đó là có cách giải
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2010}+1\right)-\left(\frac{x-3}{2009}+1\right)=\frac{x-4}{2008}+1\)
\(\Rightarrow\frac{x-1+2011}{2011}+\frac{x-2+2010}{2010}-\frac{x-3+2009}{2009}=\frac{x-4+2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x - 2012 = 0
=> x = 2012
Vậy x = 2012
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2010}+1\right)-\left(\frac{x-3}{2009}+1\right)=\frac{x-4}{2008}+1\)
\(\Rightarrow\frac{x-1+2011}{2011}+\frac{x-2+2010}{2010}-\frac{x-3+2009}{2009}=\frac{x-4+2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x - 2012 = 0
=> x = 2012
Vậy x = 2012
Kết quả đúng òi nhưng mà dấu suy ra thứ 2 ế \(x-1+2011\) thì bằng \(x+2010\) mà. Cả mấy cái bên cạnh cũng bị tính sai.
\(\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}\)
\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}=\frac{x-3-2009}{2009}+\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x-2012=0\)
\(\Rightarrow x=2012\)