Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\sqrt{x^2+2012}=2012.\)
\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)
Đến đây chia 2 TH ra là ok
ĐKXĐ: \(0\le x,y\le2012\)
Dễ thấy hệ pt trên là hệ pt đối xứng nên
\(x=y\)
Suy ra \(\sqrt{x}+\sqrt{2012-x}=\sqrt{2012}\Leftrightarrow2012+2\sqrt{2012x-x^2}=2012\) \(\Leftrightarrow\sqrt{2012x-x^2}=0\Leftrightarrow x\left(2012-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2012\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\y=2012\end{matrix}\right.\)
Vậy nghiệm của hệ pt là (0;0) , (2012;2012)
mik nghĩ đề sai lẽ ra phải là P=\(\dfrac{2010+2011\sqrt{1-x^2}+2012}{\sqrt{1-x^2}}\)(\(-1\le x\le1\))
P=\(\dfrac{2010}{\sqrt{1-x^2}}+2011+\dfrac{2012}{\sqrt{1-x^2}}=\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1-x\right).\left(1+x\right)}}+2011\)
áp dụng BDT CÔ SI \(\sqrt{\left(1-x\right)\left(1+x\right)}\le\dfrac{1-x+1+x}{2}=1\)
=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2010\left(1\right)\)
tương tự \(\dfrac{2012}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012\left(2\right)\)
cộng vế (1)(2)=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012.}{\sqrt{\left(1-x\right)\left(1+x\right)}}\ge2012+2010=4022\)
=>\(\dfrac{2010}{\sqrt{\left(1-x\right)\left(1+x\right)}}+\dfrac{2012}{\sqrt{\left(1+x\right)\left(1-x\right)}}+2011\ge4022+2011=6033\)
dấu = xảy ra khi và chỉ khi x=0
vậy min P=6033
Ta có
\(\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\)
Từ đó ta suy ra
\(x+\sqrt{x^2+2012}=\frac{2012}{y+\sqrt{y^2+2012}}=\sqrt{y^2+2012}-y\left(1\right)\)
Tương tự
\(y+\sqrt{y^2+2012}=\frac{2012}{x+\sqrt{x^2+2012}}=\sqrt{x^2+2012}-x\left(2\right)\)
Cộng (1) và (2) vế theo vế ta được
x + y = 0
Bạn cứ lấy (1) cộng (2) vế theo vế rồi rút gọn là thấy ah
Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)
Pt trở thành:
\(x^4+t=t^2-x^2\)
\(\Leftrightarrow x^4-t^2+x^2+t=0\)
\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)
\(\Leftrightarrow x^2+1=t\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)
\(\Leftrightarrow x^4+x^2-2011=0\)
\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)