Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
<=> 10x - 35 + 16x - 10 = 5
<=> 10x + 16x = 5 + 35 + 10
<=> 26x = 50
<=> x = 50/26 = 25/13
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a) \(\left(x+2\right)\left(x+3\right)-\left(x+1\right)\left(x+7\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-8x-7=6\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
b) \(\left(8x-3\right)\left(3x+2\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Leftrightarrow\left(8x-3\right)\left(9x^2+12x+4\right)-4x^2-23x-28=10x^2+3x-1-33\)
\(\Leftrightarrow72x^3+69x^2-4x-12-14x^2-26x+6=0\)
\(\Leftrightarrow72x^3+55x^2-30x-6=0\)
Nghiệm vô tỉ: \(x_1=-1,078...\) ; \(x_2=0,476...\) ; \(x_3=-0,162...\)
a) (x + 2)(x + 3) - (x + 1)(x + 7) = 6
=> x(x + 3) + 2(x + 3) - x(x + 7) - 1(x + 7) = 6
=> x2 + 3x + 2x + 6 - x2 - 7x - x - 7 = 6
=> x2 + 5x + 6 - x2 - 7x - x - 7 = 6
=> (x2 - x2) + (5x - 7x - x) + (6 - 7) = 6
=> -3x - 1 = 6
=> -3x = 7
=> x = -7/3
b) (8x - 3)(3x + 2)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
=> (8x - 3)(9x2 + 12x + 4) - [4x(x + 4) + 7(x + 4)] = 2x(5x - 1) + 1(5x - 1) - 33
=> 8x(9x2 + 12x + 4) - 3(9x2 + 12x + 4) - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
=> 72x3 + 96x2 + 32x - 27x2 - 36x - 12 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
=> 72x3 + (96x2 - 27x2 - 10x2 - 4x2) + (32x - 36x - 16x - 7x + 2x - 5x) + (-12 - 28 + 1 + 33) = 0
=> 72x3 + 55x2 - 30x - 6 = 0
=> x vô nghiệm
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
không ai trả lời
a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)
\(< =>6x-2-5x+15-18x+36=24\)
\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)
b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)
\(< =>2x^2+4x^2-4=6x^2+2x\)
\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)
c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)
\(< =>10x-6x^2+6x^2-10x-3x+21=4\)
\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)
d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)
\(< =>5x^2+5x-4x^2-8x=1-x\)
\(< =>x^2-3x+x-1=0\)
\(< =>x^2-2x-1=0\)
\(< =>\left(x-1\right)^2=2\)
\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
a, \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow x^2-4x+4-\left(x^2+6x+9\right)-4x-4=5\)
\(\Leftrightarrow x^2-4x+4-x^2-6x-9-4x-4=5\)
\(\Leftrightarrow-14x-9=5\)
\(\Leftrightarrow-14x=14\)
\(\Leftrightarrow x=-1\)
Vậy....
b, \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow\left(2x\right)^2-3^2-\left(x^2-2x+1\right)-3x^2+15x=-44\)
\(\Leftrightarrow4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(\Leftrightarrow-10+17x=-44\)
\(\Leftrightarrow17x=-34\)
\(\Leftrightarrow x=-2\)
Vậy....
c, \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow\left(5x\right)^2+10x+1-\left[\left(5x\right)^2-3^2\right]=30\)
\(\Leftrightarrow\left(5x\right)^2+10x+1-\left(5x\right)^2+9=30\)
\(\Leftrightarrow10x+10=30\)
\(\Leftrightarrow10x=20\)
\(\Leftrightarrow x=2\)
Vậy....
d, \(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-2\right)^2=7\)
\(\Leftrightarrow x^2+6x+9+x^2-4-2\left(x^2-4x+4\right)=7\)
\(\Leftrightarrow2x^2+6x+5-2x^2+8x-8=7\)
\(\Leftrightarrow14x-3=7\)
\(\Leftrightarrow14x=10\)
\(\Leftrightarrow x=\frac{10}{14}=\frac{5}{7}\)
Vậy...