Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x-3}=\sqrt{3}-\sqrt{5}\)
\(\Leftrightarrow x\in\varnothing\)
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
đặt x - 2 = a ; x - 3 = b thì a + b = 2x - 5
Ta có : ( a + b )3 - a3 = b3
\(\Rightarrow\)a3 + b3 + 3ab ( a + b ) - a3 = b3
\(\Rightarrow\)3ab ( a + b ) = 0
\(\Rightarrow\)a = 0 hoặc b = 0 hoặc a + b = 0
\(\Rightarrow\)x = 3 hoặc x = 2 hoặc x = \(\frac{5}{2}\)
ĐKXĐ: `x>=0`
`a,sqrtx=21`
`=>x=21(TMĐK)`
KL...
`b,3\sqrtx=18`
`<=>sqrtx=6`
`=>x=36(TMĐK)`
KL...
`c,sqrtx <=5`
`=>x<=25` kết hợp với điều kiện có `0<=x<=25`
KL....
`d,3sqrt(2x)>9`
`<=>sqrt(2x)>3`
`=>2x>9`
`<=>x>9/2(TMĐK)`
KL...
a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)
\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))
\(\Rightarrow x\le1\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)
b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)
Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:
\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)
\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)
\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)