\(x^3-6x^2-x+30=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

\(x^3-6x^2-x+30=0\)

\(\Leftrightarrow x^3-5x^2-x^2+5x-6x+30=0\)

\(\Leftrightarrow x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^2-x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2x-6\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[x\left(x-3\right)+2\left(x-3\right)\right]\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=5\end{matrix}\right.\)

Vậy...

19 tháng 8 2017

\(x^3-6x^2-x+30=0\)

\(x^3+2x^2-8x^2-16x+15x+30=0\)

\(\left(x^2+2x^2\right)-\left(8x^2+16x\right)+\left(15x+30\right)=0\)

\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

\(\left(x+2\right)\left(x^2-8x+15\right)=0\)

TH1: \(x+2=0\Leftrightarrow x=-2\) (1)

TH2: \(x^2-8x+15=0\)

\(x^2-8x=-15\)

\(x^2-2x.4+16=-15+16\)

\(\left(x-4\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x-4=1\\x-4=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\left(2\right)\)

Từ (1) và (2) \(\Rightarrow x\in\left\{-2;5;3\right\}\)

28 tháng 5 2019

a,  3x-  6x  >  0

=>    3x2  >  6x      ( Với mọi x )

=>   3xx  >  6x

=>   3x > 6   =>   x > 3

Vậy x > 3 là thỏa mãn yêu cầu

b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0

=>  2x - 3  \(\le\)0      Hoặc   2 -  5x  \(\le\)0

Trường hợp 1:    2x - 3  \(\le\)0

          =>   2x \(\le\)3

          =>    x  \(\le\)\(\frac{3}{2}\)( 1 )

Trường hợp 2:          2 - 5x \(\le\)0

          =>    2 \(\le\)5x

          =>   x   \(\le\frac{2}{5}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra:

\(\le\frac{3}{2}\)Hoặc  x\(\le\frac{2}{5}\)là thỏa mãn

Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra   x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu

Vậy ....

c, x2 - 4 \(\ge\)0

=>  x2 \(\ge\)4

=>  x2   \(\ge\)22

=> x \(\ge\)2

Vậy x\(\ge\)2 là thỏa mãn yêu cầu

~Haruko~

28 tháng 5 2019

a) (3x)2 - 6x > 0

=> 3x (3x - 2) > 0

*Trường hợp 1: 

  • 3x > 0 và 3x - 2 > 0

       => x > 0 và x > 2/3     (1)

*Trường hợp 2:

  • 3x < 0 và 3x - 2 < 0

       => x < 0 và x < 2/3     (2)

*** Từ (1) (2) => x > 0 hoặc x < 2/3 sẽ thỏa mãn bất phương trình trên.

17 tháng 11 2016

x2+16x+60=0

<=> x2+10x+6x+60 

<=>x(x+10)+6(x+10)

<=>(x+6).(x+10)=0

=>\(\orbr{\begin{cases}x+6=0\\x+10=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-6\\x=-10\end{cases}}\)

b/9x2+6x+1=0

<=>9x2+3x+3x+1

<=>3x(3x+1)+(3x+1)

<=>(3x+1)(3x+1)=0

=> 3x+1=0=> x= \(\frac{-1}{3}\)

c/ x-\(2\sqrt{x}\)-3=0

<=>x+\(\sqrt{x}\)-3\(\sqrt{x}\)-3

<=>\(\sqrt{x}\)(\(\sqrt{x}\)+1)-3(\(\sqrt{x}+1\))

<=>\(\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)\)=0

=>\(\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{cases}}\)<=>\(\orbr{\begin{cases}\sqrt{x}=-1\\\sqrt{x}=3\end{cases}}\)=>\(\orbr{\begin{cases}x\in\Phi\\x\in\left\{9;-9\right\}\end{cases}}\)

17 tháng 7 2019

1. a) x^2=16=>x=+_4

b)x^2=36=>x=+_6

c)x^2=49=>x=+_7

d) x-1=+_5

+) x-1=5

=>x=6

+)x-1=-5

=>x=-4

e) (x+3)^2=-1( vô lý)

ko cs gtri của x

f) (2x+7)^2=36=>2x+7=+_6

+) 2x+7=6

x=-1/2

+) 2x+7=-6

=>x=-13/2

17 tháng 7 2019

2. a) \(\sqrt{x}\)=3=>x=9

c) 5/11\(\sqrt{x}\)=1/2

\(\sqrt{x}=\)11/10

x=121/100

b) \(\sqrt{x-1}=13,5\)

x-1=182,25

x=183,25

30 tháng 7 2017

1, \(x^2-4x-4x+16=0\)

\(\Leftrightarrow x^2-8x+16=0\)

\(\Leftrightarrow\left(x-4\right)^2=0\)

\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy.............

2, \(x^2+3x-5x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

Vậy...............

3, \(x^2-6x+8=0\)

\(\Leftrightarrow x^2-6x+9-1=0\)

\(\Leftrightarrow\left(x-3\right)^2-1=0\)

\(\Leftrightarrow\left(x-3\right)^3=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy......................

4, \(x^2+8x+12=0\)

\(\Leftrightarrow x^2+8x+16-4=0\)

\(\Leftrightarrow\left(x+4\right)^2-4=0\)

\(\Leftrightarrow\left(x+4\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

Vậy............