Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3-25x=0
=> x(x2-25)=0
=> x(x2-52)=0
=> x(x-5)(x+5)=0
=> x=0 hoặc x-5=0 hoặc x+5=0
=> x=0 hoặc x=5 hoặc x=-5
x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c) x( 2x - 3 ) - 2( 3 - 2x) =0
\(\Leftrightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=\frac{3}{2}\end{array}\right.\)
d) 25x2 - 36 =0
\(\Leftrightarrow\left(5x\right)^2-6^2=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)
\(\Leftrightarrow x=\pm\frac{6}{5}\)
a) \(x\left(2x-3\right)-2\left(3-2x\right)=0\)
=> \(\left(2x-3\right)\left(x+2\right)=0\)
=>\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
b) \(25x^2-36=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{6}{5}\\x=-\frac{6}{5}\end{array}\right.\)
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
b) x(x2-24)=0
=> x=0 hoặc x2-24=0<=>x=0 hoặc x2=24(loại)=>x=0
a) \(25x^2-2=0\)
\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)
\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)
\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(10x-x^2-25=0\)
\(=>-x^2-5x-5x-25=0\)
\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)
\(=>\left(x+5\right)\left(-x-5\right)=0\)
\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)
\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
a) x3 = 25x
=> x3 - 25x = 0
=> x(x2 - 25) = 0
=> x(x - 5)(x + 5) = 0
=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x = 0 hoặc x = 5 hoặc x = -5
b) x2 - 6x + 8 = 0
=> x2 - 6x + 9 - 1 = 0
=> (x - 3)2 - 12 = 0
=> (x - 3 - 1)(x - 3 + 1) = 0
=> (x - 4)(x - 2) = 0
=> \(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
a) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm5\end{matrix}\right.\)
b) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Leftrightarrow2x^2-3x+6x-9=0\)
\(\Leftrightarrow x\left(2x-3\right)+3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)
A) \(\left(x+y\right)^2=\left(x-y\right)^2+4xy=5^2+4.3=37\)
B)
a) \(\left(x+3\right)^2-\left(x-2\right)^2=11\)
\(\Leftrightarrow\)\(x^2+6x+9-\left(x^2-4x+4\right)-11=0\)
\(\Leftrightarrow\)\(x^2+6x+9-x^2+4x-4-11=0\)
\(\Leftrightarrow\)\(10x-6=0\)
\(\Leftrightarrow\)\(10x=6\)
\(\Leftrightarrow\)\(x=\frac{3}{5}\)
Vậy...
b) \(25x^2-9=0\)
\(\Leftrightarrow\)\(\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy...
\(x^3-25x=0\Leftrightarrow x\left(x^2-25\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\end{matrix}\right.\) vậy \(x=0;x=5;x=-5\)
\(x^3-25x=0\\\Leftrightarrow x\left(x^2-25\right)=0\\ \Leftrightarrow x\left(x^2-5^2\right)=0\\ \Leftrightarrow x\left(x+5\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right. \)
Vậy \(x=0\) hoặc \(x=-5\) hoặc \(x=5\)