Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\) ( Trừ mỗi vế cho 2 ta được phương trình như này nhé ! )
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)
Do \(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\) nên \(x-2010=0\Leftrightarrow x=2010\)
2, \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{55-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)+\left(\dfrac{51-x}{49}+1\right)=0\)
\(\Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\) \(\Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\) Do \(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\ne0\) nên \(100-x=0\Leftrightarrow x=100\)
\(\frac{2009x2008-1}{2007x2009+2008}=\frac{2009x2007+2009-1}{2009x2007+2008}=1.\)
vậy biểu thức trên =1
\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\)
\(\Rightarrow\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}+1=0\)
\(\Rightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\)
\(\Rightarrow\left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)
Mà \(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\ne0\)
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
Vậy x = -2012
\(\dfrac{x+1}{2011}+\dfrac{x+2}{2010}+\dfrac{x+3}{2009}+\dfrac{x+4}{2008}=-4\\ \Leftrightarrow1+\dfrac{x+1}{2011}+1+\dfrac{x+2}{2010}+1+\dfrac{x+3}{2009}+1+\dfrac{x+4}{2008}=0\\ \Leftrightarrow\dfrac{x+2012}{2011}+\dfrac{x+2012}{2010}+\dfrac{x+2012}{2009}+\dfrac{x+2012}{2008}=0\\ \Leftrightarrow \left(x+2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\\ \Rightarrow x+2012=0\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}>0\right)\\ \Rightarrow x=-2012\)
Vậy \(x=-2012\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\.................\\\left|x+2008\right|\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow VT=\left|x+1\right|+\left|x+2\right|+...+\left|x+2008\right|\ge0\forall x\)
\(\Rightarrow VP\ge0\forall x\Rightarrow2009x\ge0\Rightarrow x\ge0\)
Vậy \(pt\Leftrightarrow\left(x+1\right)+\left(x+2\right)+...+\left(x+2008\right)=2009x\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+2008\right)=2009x\)
\(\Leftrightarrow2008x+2017036=2009x\)
\(\Leftrightarrow2009x-2008x=2017036\Leftrightarrow x=2017036\)
Lời giải:
\(x=\frac{1}{2^{2009}}+\frac{2}{2^{2008}}+\frac{3}{2^{2007}}+....+\frac{2008}{2^2}+\frac{2009}{2}\)
\(2x = \frac{1}{2^{2008}}+\frac{2}{2^{2007}}+\frac{3}{2^{2006}}+...+\frac{2008}{2}+2009\)
\(\Rightarrow x=2x-x=2009-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2008}}-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\)
\(\Rightarrow 2(2009-x)=1+\frac{1}{2}+....+\frac{1}{2^{2007}}+\frac{1}{2^{2008}}\)
\(\Rightarrow 2(2009-x)-(2009-x)=1-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=1-\frac{1}{2^{2009}}\\ \Rightarrow x=2009-(1-\frac{1}{2^{2009}})=2008+\frac{1}{2^{2009}}\)
Với x\(\in\)Z thì ta có:
/x+2008/\(\ge\)0
/x+2009/\(\ge\)0
Nên tổng\(\ge\)0
Mà tổng=1
Nên\(\orbr{\begin{cases}x+2008=0\\x+2008=1\end{cases}}\)
\(\Rightarrow\)x\(\in\){-2008;-2009}
|x+2008|+|x+2009|=1 (1)
Với x thuộc Z , ta có |x+2008| ≥ 0 , |x+2009|≥ 0
=> |x+2008| + |x+2009| ≥ 0
Nên từ (1) => x ≥ 0
=> x+2008 ≥ 0 và x+2009 ≥0
Do đó :Vế trái = x+2008+x+2009
=(x+x) +(2008+2009)
=2x +2017
Nên :2x+2017=1
2x=1-2017
2x=-2016
x=-2016:2
Vậy x=-1008