Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X4 + X3 - X2 + X - 2 = 0
<=>x4-1+x3-x2+x-1=0
<=>(x2-1)(x2+1)+x2(x-1)+(x-1)=0
<=>(x-1)(x+1)(x2+1)+x2(x-1)+x(x-1)=0
<=>(x-1)(x3+x+x2+1+x2+x)=0
<=>(x-1)(x3+2x2+2x+1)=0
<=>(x-1)[(x+1)(x2-x+1)+2x(x+1)]=0
<=>(x-1)(x+1)(x2-x+1+2x)=0
<=>(x-1)(x+1)(x2+x+1)=0
vì x2+x+1=x2+2.x.1/2+1/4+3/4
=(x+1/2)2+3/4 > 0 với mọi x nên
x-1=0 hoặc x+1=0
<=>x=1 hoặc x=-1
a) (x2 + 4)2 - 4x(x2 + 4) = 0
(x2 + 4)(x2 + 4 - 4x) = 0
(x2 + 4)(x - 2)2 = 0
\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0
\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0
\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2
Vậy x = 2
b) x5 - 18x3 + 81x = 0
x(x4 - 18x2 + 81) = 0
x(x2 - 9) = 0
x(x - 3)(x + 3) = 0
\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3
Vậy \(x\in\left\{0;3;-3\right\}\)
\(=>2^3-x^3+\left(x^2-3x\right)\left(x+4\right)-x^2+24=0\)
\(=>8-x^3+x^3+x^2-12x-x^2+24=0\)
\(=>-12x=-16=>x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
\(\left(x^2+2x+4\right)\left(2-x\right)+x\left(x-3\right)\left(x+4\right)-x^2+24=0\)
\(\Leftrightarrow2x^2-x^3+4x-2x^2+8-4x+\left(x^2-3x\right)\left(x+4\right)-x^2+24=0\)
\(\Leftrightarrow2x^2-x^3+4x-2x^2+8-4x+x^3+4x^2-3x^2-12x-x^2+24=0\)
\(\Leftrightarrow-12x+8+24=0\)
\(\Leftrightarrow-12x+32=0\)
\(\Leftrightarrow-12x=-32\)
\(\Leftrightarrow x=\frac{8}{3}\)
a, \(x^3-7x=0\Leftrightarrow x^2\left(x-7\right)=0\)
\(\left(+\right)x^2=0\Leftrightarrow x=0\)
\(\left(+\right)x-7=0\Leftrightarrow x=7\)
Vậy \(x=0;x=7\)
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^3+8-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow x=4\)
Vậy x=4
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^3+2^3\right)-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12-2=0\)
\(3x-42=0\)
\(3x=42\)
\(x=14\)
#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
1.1 / 3x(x-2005)-x+2005=0
<=>3x(x-2005)-(x-2005)=0
<=>(x-2005)(3x-1)=0
<=>x-2005=0 hoặc 3x-1=0
<=>x=2005 hoặc x=1/3
1.2/ x+1 =(x+1)2
<=>(x+1) - (x+1)2=0
<=>(x+1) (1-x+1)=0
<=> (x+1) (2-x) =0
<=>x+1=0 hoặc 2-x =0
<=> x=-1 hoặc x=2
1.3/x3=5x
<=>x3-5x=0
<=>x(x2-5)=0
<=>x=0 hoặc x2-5=0
<=>x=0 hoặc x2=5
<=>x=0 hoặc x=\(\sqrt{5}\)và \(-\sqrt{5}\)
1.4/x2(x2 -2)-4(2-x2)=0
<=>x2(x2-2) +4(x2-2)=0
<=> (x2 -2)(x2+4)=0
<=>x2-2=0 hoặc x2+4=0
<=>x2=2 hoặc x2=-4(vô lí)
<=>x=\(\sqrt{2}\)hoặc \(-\sqrt{2}\)
\(x^2.\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\varnothing\end{cases}}\)
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x+1\right)\left(x-1\right)=0\)
Vì \(x^2+4>0\left(x^2\ge0;4>0\right)\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\)
Vậy ..........