
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(\Leftrightarrow x\left(16-x^2\right)+x^3-125=3\)
=>16x-125=3
=>16x=128
hay x=8
b: \(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
hay x=-1/2
c: \(\Leftrightarrow x^3-27+x\left(4-x^2\right)=1\)
\(\Leftrightarrow4x-27=1\)
hay x=7


\(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(x^3-6x^2+12x-8-x^3+6x^2=4\)
\(12x-8=4\)
\(12x=4+8\)
\(12x=12\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0\)
\(7x^2=0\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Tham khảo nhé~

1P = (x + 1)3 + (x + 1)(6 - x2) - 12
P = x3 + 3x2 + 3x + 1 + 6x - x3 + 6 - x2 - 12
P = 2x2 + 3x - 5

6(x + 1)2 - 2(x + 1)3 + 2(x - 1)(x2 + x + 1) = 0
<=> 6(x2 + 2x + 1) - 2(x3 + 3x2 + 3x + 1) + 2(x - 1)(x2 + x + 1) = 0
<=> 6.x2 + 6.2x + 6.1 + (-2).x3 + (-2).3x2 + (-2).3x + (-2).1 + 2.x3 + 2(-1) = 0
<=> 6x2 + 12x + 6 - 2x3 - 6x2 - 6x - 2 + 2x3 - 2 = 0
<=> (6x2 - 6x2) + (12x - 6x) + (6 - 2 - 2) + (-2x3 + 2x2) = 0
<=> 6x + 2 = 0
<=> 6x = 0 - 2
<=> 6x = -2
<=> x = -2/6 = -1/3
=> x = -1/3

a) Ta có: (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0
<=> (x2 + 8x + 7)(x2 + 8x + 15) + 15 = 0
<=> (x2 + 8x + 7)2 + 8(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x +7 )2 + 3(x2 + 8x + 7) + 5(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x + 7 + 3)(x2 + 8x + 7 +5) = 0
<=> (x2 + 8x + 10)(x2 + 8x + 12) = 0
<=> \(\orbr{\begin{cases}x^2+8x+10=0\\x^2+8x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2-6=0\\x^2+6x+2x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2=6\left(1\right)\\\left(x+6\right)\left(x+2\right)=0\left(2\right)\end{cases}}\)
Giải (1) <=> \(\orbr{\begin{cases}x+4=\sqrt{6}\\x+4=-\sqrt{6}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\sqrt{6}-4\\x=-\sqrt{6}-4\end{cases}}\)
Giải (2) <=> \(\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)
b) Ta có: (x2 + x)(x2 + x + 1) = 6
<=> (x2 + x)2 + (x2 + x) - 6 = 0
<=> (x2 + x)2 + 3(x2 + x) - 2(x2 + x) - 6 = 0
<=> (x2 + x + 3)(x2 + x - 2) = 0
<=> x2 + 2x - x - 2 = 0 (vì x2 + x + 3 = (x + 1/2)^2 + 11/4 > 0)
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
đặt \(A=x^2+x+2,\quad B=x+1\)
ta có: \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
mà A - B = \(x^2+x+2-x-1=x^2+1\)
nên \(\left(x^2+1\right)\left(A^2+AB+B^2\right)=x^6+1\)
\(\left(x^2+1\right)\left(A^2+AB+B^2\right)=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
\(\left(x^2+1\right)\left(A^2+AB+B^2\right)-\left(x^2+1\right)\left(x^4-x^2+1\right)=0\)
\(\left(x^2+1\right)\left(A^2+AB+B^2-x^4+x^2-1\right)=0\)
\(\left(x^2+1\right)\left\lbrack\left(x^2+x+2\right)^2+\left(x^2+x+2\right)\left(x+1\right)+\left(x+1\right)^2-x^4+x^2-1\right\rbrack=0\)
\(\left(x^2+1\right)\left\lbrack x^4+2x^3+5x^2+4x+4+x^3+2x^2+3x+2+x^2+2x+1-x^4+x^2-1\right\rbrack=0\)
\(\left(x^2+1\right)\cdot\left(3x^3+9x^2+9x+6\right)=0\)
\(\left(x^2+1\right)\cdot3\cdot\left(x+2\right)\cdot\left(x^2+x+1\right)=0\)
vì \(\begin{cases}x^2+1\\ x^2+x+1\end{cases}>0\forall x\in\R\)
nên x + 2 = 0
⇒ x = -2
kết luận: x = -2