Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{X}{Y}=\dfrac{7}{5}x^{n-1}-x^{3-n}\)
Để X chia hết cho Y thì n-1>=0 và 3-n>=0
=>1<=n<=3
=>\(n\in\left\{1;2;3\right\}\)
\(b,3x+x^2=0\\ \Rightarrow x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\\ c,\left(x-1\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< 3\end{matrix}\right.\end{matrix}\right.\)
Vậy 1<x<3
a) x² - 2 = 0
x² = 2
x = -√2 (loại) hoặc x = √2 (loại)
Vậy không tìm được x Q thỏa mãn đề bài
b) x² + 7/4 = 23/4
x² = 23/4 - 7/4
x² = 4
x = 2 (nhận) hoặc x = -2 (nhận)
Vậy x = -2; x = 2
c) (x - 1)² = 0
x - 1 = 0
x = 1 (nhận)
Vậy x = 1
\(\left(x-3\right)\left(4-x\right)>0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\) (vô lí)
hoặc \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)
Vậy \(x=\Phi\)
Tham khảo nhé :
\(\left|x-2\right|-3x\left|+\right|x-1\left|x-3\right|=0\)
\(\Leftrightarrow\left|x-2\right|-3=0\)hoặc \(5+\left|x\right|=0\)
Xét \(\left|x-2\right|-3=0\Leftrightarrow\left|x-2\right|=3\)
\(\Rightarrow x-2=\pm3\)
Với: \(x-2=3\Rightarrow x=5\)
Với: \(x-2=-3\Rightarrow x=-1\)
Vậy:..
`#3107.101107`
`1/2x + 4/5 = 2x - 8/5`
`=> 1/2x - 2x = -4/5 - 8/5`
`=> -3/2x = -12/5`
`=> x = -12/5 \div (-3/2)`
`=> x = 8/5`
Vậy, `x = 8/5`
_____
`\sqrt{x} = 5`
`=> x = 5^2`
`=> x = 25`
Vậy, `x = 25`
___
`x^2 = 3`
`=> x^2 = (+-\sqrt{3})^2`
`=> x = +- \sqrt{3}`
Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`
Ta có : A(0) = a.02 + b.0 + c = c = 4
=> c = 4
Lại có A(1) = a.12 + b.1 + c = a + b + c = 9
mà c = 4
=> a + b = 5 (1)
Mặt khác A(2) = a.22 + b.2 + c = 4a + 2b + c = 14
mà c = 4
=> 4a + 2b = 10
=> 2a + b = 5 (2)
Từ (1)(2) => a = 0 ; b = 5
=> A(x) = 5x + 4
Vậy a = 0 ; b = 5 ; c = 4