Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
(x-1)x+2 = (x-1)x+6
=> (x-1)x+6-(x-1)x+2=0
=> (x-1)x+2[(x-1)4-1]=0
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\)x=1 hoặc \(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy \(x\in\left\{1;2;0\right\}\)
ta có: \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\Leftrightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^{x+4}-1\right]=0\)
\(\Leftrightarrow[\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^{x+4}-1=0\end{cases}\Leftrightarrow[\begin{cases}x-1=0\\x-1=1\end{cases}\Leftrightarrow[\begin{cases}x=1\\x=0\end{cases}\)
Vậy x = 1 hoặc x = 0
Học tốt nhé ^3^
(x-1)^(x+2)=(x-1)^(x+6)
[(x-1)^x].(x-1)^2=[(x-1)^x].(x-1)^6
(x-1)^2=(x-1)^6
(X-1)^2=(x-1)^2.(x-1)^4
1=(x-1)^4
1=x-1
1+1=x
2=x
Nhớ k cho mình nha
1:
a: f(3)=2*3^2-3*3=18-9=9
b: f(x)=0
=>2x^2-3x=0
=>x=0 hoặc x=3/2
c: f(x)+g(x)
=2x^2-3x+4x^3-7x+6
=6x^3-10x+6
a. x = {3;-3}
b. x thuộc rỗng
c. x2-4=0
x2 = 4
x={2;-2}
d. x2+1=82
x2 =83
x thuộc rỗng
e. (2x)2=6
x thuộc rỗng
f. (x-1)2=9
TH1: x-1=3=>x=4
TH2: x-1=-3=>x=-2
Vậy x={4;-2}
g.(2x+3)2=25
TH1: 2x+3=5=> x=1
Th2: 2x+3=-5=>x=-4
VẬY X={1;-4}
a, x^2= 9
=>\(\sqrt{9}=3\)
b,\(x^2=5=>x=\sqrt{5}\)
c, x^2-4=0
=>x^2=4
=>x=2
d, x^2+1=82
=>x^2=81 =>\(\sqrt{81}=9\)
3, 2x^2=6
=>x= \(\sqrt{6}\)
f, {x-1} ^2=9
=> x-1=3
=>x=2
g{ 2x+3}^2=25
=> 2x+3=5
=>2x=2
=>x=1
Đặt \(N=\left|x+1\right|+\left|x+7\right|=\left|x+1\right|+\left|-x-7\right|\ge\left|x+1-x-7\right|\)
\(\Rightarrow N\ge6\left(\text{*}\right)\)
Đặt \(M=6-\left(x+2\right)^2\Rightarrow6-\left(x+2\right)^2\le6\)
\(\Rightarrow M\le6\left(\text{*}\text{*}\right)\)
Từ (*) và (**) \(\Rightarrow\left(x+1\right)\left(-x-7\right)\ge0;x=-2\)
Với \(x+1\ge0;-x-7\ge0\)
\(\Rightarrow x\ge-1;x\le-7\)
\(\Rightarrow-1\le x\le-7\) (Vô lý)
Với \(x+1\le0;-x-7\le0\)
\(\Rightarrow x\le-1;x\ge-7\)
\(\Rightarrow-7\le x\le-1\)
\(\Rightarrow x=-2\)