K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có  x+1+x+2+x+3=4x
=> 3x+ 6 =4x
=> 3x - 4x = -6
=> -x = -6
=> x=6

13 tháng 8 2017

tks bn nhé

6 tháng 3 2019

Vì |x+1| lớn hơn hoặc bằng 0

    |x+2| lớn hơn hoặc bằng 0

    |x+3| lớn hơn hoặc bằng 0

Nên |x+1|+|x+2|+|x+3| lớn hơn hoặc bằng 0

Hay 4x lớn hơn hoặc bằng 0

=> x lớn hơn hoặc bằng 0

Ta có: x lớn hơn hoặc bằng 0

 Nên |x+1|=x+1

        |x+2|=x+2

        |x+3|=x+3

=> |x+1"+|x+2|+"x+3|=x+1+x+2+x+3

hay x+1+x+2+x+3=4x

 3x+6=4x

  x=6

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2

16 tháng 7 2018

mở dấu trị tuyệt đối ra rồi tính như bình thường

13 tháng 9 2019

Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+3\right|\ge0\\\left|x+5\right|\ge0\end{cases}}\Rightarrow VT\ge0\)

\(\Leftrightarrow3x-4\ge\Leftrightarrow x\ge\frac{4}{3}\)

\(\Rightarrow pt\Leftrightarrow3x+9=3x-4\Leftrightarrow9=-4\)(vô lí)

Vậy pt vô nghiệm

13 tháng 9 2019

\(\left||2x-3|-x+3\right|=4x-1\)(1)

*Nếu \(x\le3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|+3-x=4x-1\)

\(\Leftrightarrow\left|2x-3\right|=5x-4\)(2)

+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow2x-3=5x-4\)

\(\Leftrightarrow-3x=-1\Leftrightarrow x=\frac{1}{3}\left(L\right)\)

+) TH2: \(x< \frac{3}{2}\)thì \(\left(2\right)\Leftrightarrow3-2x=5x-4\)

\(\Leftrightarrow-7x=-7\Leftrightarrow x=1\left(TM\right)\)

*Nếu \(x>3\)thì \(\left(1\right)\Leftrightarrow\left|2x-3\right|-3+x=4x-1\)

\(\Leftrightarrow\left|2x-3\right|=3x+2\)(3)

+) TH1: \(x\ge\frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow2x-3=3x+2\Leftrightarrow-x=5\Leftrightarrow x=-5\left(L\right)\)

+) TH2: \(x< \frac{3}{2}\)thì \(\left(3\right)\Leftrightarrow3-2x=3x+2\Leftrightarrow-5x=-1\Leftrightarrow x=\frac{1}{5}\left(L\right)\)

Vậy x = 1

14 tháng 4 2019

b

\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)

Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)

14 tháng 4 2019

a

Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)

\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)

Với \(x\ge4\) ta có:

\(3x-12+4x=2x-2\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\left(KTMĐK\right)\)

Với  \(x< 4\) ta có:

\(12-3x+4x=2x-2\)

\(\Rightarrow10=x\left(KTMĐK\right)\)