![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 3x - / 2x + 1/=2
Ta co: /2x+1/ lon hon hoac bang 0
ma 3x- / 2x+1/ = 2
=> 3x la so tu nhien
=>3x-/2x+1/ = 3x - 2x+1 = 2
=>3x - 2x = 1
=>x(3-2) = 1
=>x . 1 = 1
=> x=1
KL........\
Tich cho minh nhe ! Cau b dang suy nghi .
a) Ta co: /2x+1/ lon hon hoac bang 0
ma 3x - /2x+1/ = 2
=> 3x la so tu nhien
=> 3x - /2x+1/ = 3x -2x +1 = 2\
=> 3x -2x =1
=>x=1
tick cho minh nha!!!!! Thank you nhieuuuuuuuuu !!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(3x+2\right)-\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow3x+2-x+1=4x+4\)
\(\Leftrightarrow3x+2-x+1-4x-4=0\)
\(\Leftrightarrow\left(3x-x-4x\right)+\left(1+2-4\right)=0\)
\(\Leftrightarrow-2x-1=0\)
\(\Leftrightarrow-2x=0+1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(\left|x-1\right|+1=2x-3\)
\(\Leftrightarrow\left|x-1\right|=2x-3-1\)
\(\Leftrightarrow\left|x-1\right|=2x-4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x-4\\x-1=4-2x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{3};3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải :
\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow4.\left(x-1\right)=3.\left(x-2\right)\)
\(\Rightarrow4x-4=3x-6\)
\(\Rightarrow4x-4-3x+6=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)Không thỏa mãn => Không có giá trị x thỏa mãn đề bài
\(\frac{2x-3}{x+1}=\frac{4}{7}\)
\(\Rightarrow7.\left(2x-3\right)=4.\left(x+1\right)\)
\(\Rightarrow14x-21-4x-4=0\)
\(\Rightarrow10x-25=0\)
\(\Rightarrow10x=25\)
\(\Rightarrow x=\frac{25}{10}=\frac{5}{2}\)
Giá trị trên thỏa mãn đầu bài
Các phần khác em làm tương tự nha
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
B(x)=5x2+x-5
=>2B(x)=2(5x2+x-5)
=>2B(x)=10x2+2x-10
+)Ta có : C(x)-2B(x)=A(x)
=>C(x)=A(x)+2B(x)
A(x)+2B(x)=(3x3+3x2+2x-1)+(10x2+2x-10)
A(x)+2B(x)=3x3+3x2+2x-1+10x2+2x-10
A(x)+2B(x)=3x3+(3x2+10x2)+(2x+2x)+(-1-10)
A(x)+2B(x)=3x3+13x2+4x-11
=> C(x)=3x3+13x2+4x-11
\(A\left(x\right)=3x^3+3x^2+2x-1\)
\(B\left(x\right)=5x^2+x-5\)
Ta có : \(C\left(x\right)-2B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)-10x^2+2x-10=3x^3+3x^2+2x-1\)
\(\Leftrightarrow C\left(x\right)=-10x^2+2x-10-3x^3-3x^2-2x+1=0\)
\(\Leftrightarrow C\left(x\right)=-13x^2-9-3x^3=0\)
Vậy \(C\left(x\right)=-13x^2-9-3x^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)
Khi đó : \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)
Vậy \(x\in\left\{\frac{6}{5};2\right\}\)
b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)
Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)
Vậy x = -0,25
c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)
Khi đó |5x| = x - 12
<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ĐK : \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)
Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)
Vậy x = 8/3
Tóm lại : Cách làm là
|f(x)| = g(x)
ĐK : g(x) \(\ge0\)
=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)
Bạn tự làm tiếp đi ak
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3}{2}x-\frac{2}{5}=\frac{1}{3}x-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{2}{5}-\frac{1}{3}x=-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{1}{3}x-\frac{2}{5}=-\frac{1}{4}\)
=> \(\frac{3}{2}x-\frac{1}{3}x=-\frac{1}{4}+\frac{2}{5}\)
=> \(\frac{9}{6}x-\frac{2}{6}x=-\frac{5}{20}+\frac{8}{20}\)
=> \(\frac{7}{6}x=\frac{3}{20}\)
=> \(x=\frac{3}{20}:\frac{7}{6}=\frac{3}{20}\cdot\frac{6}{7}=\frac{3}{10}\cdot\frac{3}{7}=\frac{9}{70}\)
\(-\frac{4}{3}\left[x-\frac{1}{4}\right]=\frac{3}{2}\left[2x-1\right]\)
=> \(-\frac{4}{3}x-\left[-\frac{1}{3}\right]=3x-\frac{3}{2}\)
=> \(-\frac{4}{3}x+\frac{1}{3}=3x-\frac{3}{2}\)
=> \(-\frac{4}{3}x+\frac{1}{3}-3x=-\frac{3}{2}\)
=> \(-\frac{4}{3}x-3x+\frac{1}{3}=-\frac{3}{2}\)
=> \(-\frac{4}{3}x-\frac{3}{1}x=-\frac{3}{2}-\frac{1}{3}\)
=> \(-\frac{4}{3}x-\frac{9}{3}x=-\frac{9}{6}-\frac{2}{6}\)
=> \(-\frac{13}{3}x=-\frac{11}{6}\)
=> \(x=-\frac{11}{6}:\left[-\frac{13}{3}\right]=-\frac{11}{6}\cdot\left[-\frac{3}{13}\right]=-\frac{11}{2}\cdot\left[-\frac{1}{13}\right]=\frac{11}{26}\)
Ta có : \(VT=\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\ge0\)
Trường hợp 1 :\(\hept{\begin{cases}x+1\ge0\\2x-3\ge0\end{cases}}\Leftrightarrow x\ge\frac{3}{2}\)
Trường hợp 2 : \(\hept{\begin{cases}x+1\le0\\2x-3\le0\end{cases}\Leftrightarrow}x\le-1\)