Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
x2=x5
x2 - x5 = 0
x2 . 1 - x2 . x3 = 0
x2 . (1-x3) = 0
Th1: x2 = 0 Th2: (1-x3) = 0
x = 0 x3 = 1-0
x3 = 1
x = 1
Đặt \(\hept{\begin{cases}x^2+5=a^2\\x^2-5=b^2\end{cases}\Rightarrow x^2+5}-x^2+5=a^2-b^2\)
\(\Rightarrow a^2-b^2=10\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)=10\)
Vì \(\hept{\orbr{\begin{cases}\left(a-b\right)\left(a+b\right)⋮̸2\\\left(a-b\right)\left(a+b\right)⋮4\end{cases}}}\)(do a-b và a+b luôn có cùng số dư khi chia cho 2 )
Vậy không tìm đượcx thỏa mãn x^2+5 và x^2-5 là bình phương của các số hữu tỉ
Vì x2 + 5 và x2 - 5 đều là bình phương của các số hữu tỉ nên t x2 + 5 = a2 ;x2 - 5 = b2
Lập tích (x2 + 5).(x2 - 5 ) = x2 - 52 = a2 .b2
a,\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right).\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\1-\left(2x-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=1\\2x-1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=2\\2x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=1\\x=0\end{cases}}\)
\(b,5^x+5^{x+1}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x.\left(1+5^2\right)\)\(=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=650\div26\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
\(c,3^{x-1}+5.3^{x-1}=162\)
\(\Leftrightarrow3^{x-1}.\left(1+5\right)=162\)
\(\Leftrightarrow3^{x-1}.6=162\)
\(\Leftrightarrow3^{x-1}=162\div6\)
\(\Leftrightarrow3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=3+1\)
\(\Leftrightarrow x=4\)
b)2x.(1+23)=144
2x .(1+8)=144
2x . 9 =144
2x =144:9
2x =16
2x =24
x =4
câu a ko chả lời được đâu vì
2x - 1 giống nhau thì coi như là bằng
còn mủ 6 và 8 sao bằng được
chỉ có sai đề
Ta có: \(x^2=x^5\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy ...........
\(Ta \) \(có : x^2 =x^5\)
\(\Leftrightarrow\)\(x^2 -x^5 = 0\)
\(\Leftrightarrow\)\(x^2 . (1 - x^3 )=0\)
\(\Rightarrow\)\(x^2 = 0 \) \(hoặc \) \(1 - x^3 = 0\)
\(\Rightarrow\)\(x = 0 \) \(hoặc\) \(x^3=1\)
\(\Rightarrow\)\(x = 0\) \(hoặc\) \(x = 1\)
\(Vậy : x = 0\) \(hoặc \) \(x = 1\)
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
Nguồn : Yahoo :)
Số chính phương chẵn là bình phương của số chẵn nên có dạng 4k. Số chính phương lẻ có dạng 4k + 1do (2n + 1)² = 4n(n + 1) + 1 (* )
Từ (*) => số chính phương lẻ có dạng 8k + 1 do 1 trong 2 số n vả (n + 1) chẵn.
Bình phương của số chia hết cho 3 thì chia hết cho 3. Bình phương của số không chia hết cho 3 thì chia cho 3 dư 1: (3n + 1)² = 3(3n² +- 2n) + 1
--------
Ta tìm số hữu tỷ x = n / m với (n, m) = 1, tức dưới dạng phân số tối giản
=> x² - 5 = (n² - 5m²) / m² = (k / l)², với (k, l) = 1
=> (n² - 5m²) * l² = m² * k²
Nếu n² - 5m² = 1 thì dĩ nhiên là số chính phương. Nếu n² - 5m² > 1 => mỗi ước nguyên tố p của n² - 5m² trong khai triển n² - 5m² thành tích các thừa số nguyên tố phải được nâng lên lũy thừa chẵn vì ngược lại thì VT chứa p với lũy thừa lẻ trong khi VP nếu có ước nguyên tố p thì nó được nâng lên lũy thừa chẵn nên không thể có đẳng thức. Vậy n² - 5m² là số chính phương. Tương tự n² + 5m² là số chính phương.
n và m không thể cùng chẵn vì phân số là tối giản. Cũng không thể cùng lẻ vì lúc đó n² + 5m² = 4m² + n² + m² là số có dạng 4k + 2 nên không thể là số chính phương. Vậy n và m không cùng chẵn lẻ. n không chẵn vì lúc đó m lẻ và n² - 5m² = n² - 8m² + 3m² có dạng 4k + 3. Vậy n lẻ và m chẵn. Nếu m không chia hết cho 4 tức có dạng 4k + 2 thì 5m² có dạng 8k + 4 và n² có dạng 8k + 1 nên số lẻ n² + 5m² có dạng 8k + 5 nên không thể là số chính phương. Vậy m chia hết cho 4
n và m tất nhiên không cùng chia hết cho 3 vì phân số tối giản. Nếu n chia hết cho 3 thì m không chia hết cho 3 và số n² + 5m² = n² + 3m² + 2m² chia cho 3 dư 2 nên không thể là số chính phương. Vậy m chia hết cho 3 và n không chia hết cho 3. Do (3, 4) = 1 => m chia hết cho 12 = 3*4 => m = 12*p, với p tự nhiên ≥ 1
Với p = 1 => m = 12 => n² - 5*12² = n² - 720 ≥ 0 => n ≥ 27
=> n = 29, 31, 35, 37, 41, ... (các số lẻ ≥ 27 không chia hết cho 3)
Ta loại n = 35 vì lúc đó n² - 5m² chia hết cho 5 nhưng không chia hết cho 25 do m không chia hết cho 5 nên không thể là số chính phương. Thử 4 số còn lại ta thấy n = 41 thỏa mãn:
41² - 5*12² = 31², 41² + 5*12² = 49²
(41 / 12)² - 5 = (31 / 12)², (41 / 12)² + 5 = (49 / 12)² tức x = 41 / 12 thỏa mãn