Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
<=> \(x-\frac{1}{2}=\frac{1}{3}\)
<=> x = \(\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
<=> \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{array}\right.}\)
Vậy...
a)\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{6}\)
b)\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\pm\left(\frac{2}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)
\(\Rightarrow\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}\)
a x = \(\dfrac{-1}{12}\)
b x = \(\dfrac{-4}{3}\)
c x = \(\dfrac{-1}{6}\)
d x = \(\dfrac{-1}{4}\)
\(\left(4x+1\right)^2=\dfrac{4}{9}\)
\(\left(4x+1\right)=\perp\left(\dfrac{2}{3}\right)^2\)
\(\text{Vậy }4x+1=\dfrac{2}{3}\)
\(4x\) \(=\dfrac{2}{3}+\left(-1\right)=\dfrac{-1}{3}\)
\(x\) \(=\left(\dfrac{-1}{3}\right).\dfrac{1}{4}=\dfrac{-1}{12}\)
\(\text{hoặc }4x+1=\dfrac{-2}{3}\)
\(4x\) \(=\left(\dfrac{-2}{3}\right)+\left(-1\right)=\dfrac{-5}{3}\)
\(x\) \(=\left(\dfrac{-5}{3}\right).\dfrac{1}{4}=\dfrac{-5}{12}\)
\(\Rightarrow x\in\left\{\dfrac{-1}{12};\dfrac{-5}{12}\right\}\)
\(\left(3x-1\right)^2=25\)
\(\left(3x-1\right)^2=\perp\left(5\right)^2\)
\(\text{Vậy }3x-1=5\)
\(3x\) \(=5+1=6\)
\(x\) \(=6:3=2\)
\(\text{hoặc }3x-1=-5\)
\(3x\) \(=\left(-5\right)+1=-4\)
\(x\) \(=\left(-4\right):3=\dfrac{-4}{3}\)
\(\Rightarrow x\in\left\{2;\dfrac{-4}{3}\right\}\)
\(\left(x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}\)
\(\left(x-\dfrac{1}{3}\right)^2=\perp\left(\dfrac{1}{2}\right)^2\)
\(\text{Vậy }x-\dfrac{1}{3}=\dfrac{1}{2}\)
\(x\) \(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\text{hoặc }x-\dfrac{1}{3}=\dfrac{-1}{2}\)
\(x\) \(=\left(\dfrac{-1}{2}\right)+\dfrac{1}{3}=\dfrac{-1}{6}\)
\(\Rightarrow x\in\left\{\dfrac{5}{6};\dfrac{-1}{6}\right\}\)
\(\left(4x-3\right)^2=16\)
\(\left(4x-3\right)=\perp\left(4\right)^2\)
\(\text{Vậy }4x-3=4\)
\(4x\) \(=4+3=7\)
\(x\) \(=7:4=\dfrac{7}{4}\)
\(\text{hoặc }4x-3=-4\)
\(4x\) \(=\left(-4\right)+3=-1\)
\(x\) \(=\left(-1\right):4=\dfrac{-1}{4}\)
\(\Rightarrow x\in\left\{\dfrac{7}{4};\dfrac{-1}{4}\right\}\)
a) \(\left(x-3\right)\left(4-5x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\4-5x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{4}{5}\end{array}\right.\)
b) \(\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=5\\x-1=-5\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=-4\end{array}\right.\)
a)(x-3)(4-5x)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\4-5x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{4}{5}\end{array}\right.\)
Vậy x=3 và \(\frac{4}{5}\)
b) \(\left(x-1\right)^2=25\Rightarrow\begin{cases}x-1=5\\x-1=-5\end{cases}\)
\(\Rightarrow\begin{cases}x=6\\x=-4\end{cases}\)
Vậy x=-4 và 6
\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{2}{5}\right)^2\)
\(\Leftrightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{2}{5}\right)^2\)
\(x+\frac{1}{2}=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=-\frac{2}{5}\\x+\frac{1}{2}=\frac{2}{5}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{2}{5}-\frac{1}{2}=-\frac{9}{10}\\x=\frac{2}{5}-\frac{1}{2}=-\frac{1}{10}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{9}{10}\text{ ; }-\frac{1}{10}\right\}\)
ĐKXĐ: \(x>=-\dfrac{1.96}{3}=-\dfrac{196}{300}=\dfrac{-49}{75}\)
\(\sqrt{\dfrac{1.96+3x}{4}}=\sqrt{0,04}+\dfrac{1}{4}\cdot\sqrt{\dfrac{256}{25}}\)
=>\(\sqrt{\dfrac{3x+1.96}{4}}=0.2+\dfrac{1}{4}\cdot\dfrac{16}{5}=1\)
=>\(\dfrac{3x+1,96}{4}=1\)
=>3x+1,96=4
=>3x=2,04
=>\(x=\dfrac{2.04}{3}=0.68\left(nhận\right)\)
(\(x\) + 1)2 = \(\dfrac{4}{25}\)
(\(x+1\))2 = (\(\dfrac{2}{5}\))2
\(\left[{}\begin{matrix}x+1=-\dfrac{2}{5}\\x+1=\dfrac{2}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\){ \(-\dfrac{7}{5}\) ; - \(\dfrac{3}{5}\)}
`@` `\text {Ans}`
`\downarrow`
`(x+1)^2 = 4/25`
`=> (x+1)^2 = (+-2/5)^2`
`=>`\(\left[{}\begin{matrix}x+1=\dfrac{2}{5}\\x+1=-\dfrac{2}{5}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{2}{5}-1\\x=-\dfrac{2}{5}-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
Vậy, `x \in {-3/5; -7/5}.`