Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x2 - 4x + 16 )( x + 4 ) - x( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 43 - x( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = -50
<=> 2x - 24x2 + 2 + 24x2 - 64x + 10 = -50
<=> -62x + 12 = -50
<=> -62x = -62
<=> x = 1
a)\(\Leftrightarrow\left(9x^2-30x+25\right)-\left(9x^2+6x+1\right)\)
\(\Leftrightarrow9x^2-30x+25-9x^2-6x-1=8\)
\(\Leftrightarrow9x^2-30x-9x^2-6x=8-25+1\)
\(\Leftrightarrow-36x=-16\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy \(x=\frac{4}{9}\)
b)\(\Leftrightarrow16x^2-6x-\left(16x^2-24x+9\right)=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x-9=27\)
\(\Leftrightarrow16x^2-6x-16x^2+24x=27+9\)
\(\Leftrightarrow18x=36\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Chúc bạn học tốt.
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
a, \(A=x^2+2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\)
=> \(A\ge-\frac{9}{4}\) dấu = xảy ra khi : \(x=\frac{-1}{2}\)