![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)
\(\Rightarrow\frac{7x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)
\(\Rightarrow\frac{7x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7x=25x\)
\(\Rightarrow x=0\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
\(\Rightarrow\left(4x-3\right)^4-\left(4x-3\right)^2=0\)
\(\Rightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(4x-3\right)^2=0\\\left(4x-3\right)^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3=0\\4x-3=-1\\4x-3=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\\x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)